
Insights
|
23 May 2025
LEAP brings pinpoint accuracy and ultra-low power consumption to smartwatches, fitness trackers, and sports wearables.
Smartwatches, fitness trackers, and GPS-enabled sports wearables have become essential tools for millions of users tracking their daily activities and athletic performance. But with these compact devices come big challenges - especially when it comes to delivering highly accurate GNSS positioning without draining the battery.
For device designers and users alike, the demands are increasing. Accurate tracking is expected even in dense cities, deep forests, or open water. And nobody wants to charge their wearable every day. The push to squeeze more performance into ever-smaller packages has created a tension between precision and power.
To meet this challenge head-on, u-blox has introduced LEAP (Low Energy Accurate Positioning), a powerful new GNSS technology built into the u-blox M10 platform. It enables wearables to deliver consistently accurate positioning while extending battery life - solving one of the most persistent problems in wearable design.
Accurate GNSS positioning is hard work, especially in the kinds of environments wearables are typically used in. In open-sky conditions things aren't so bad. But in a dense forest, an urban canyon, or on the side of a mountain, GNSS signal quality starts to drop and accuracy starts to suffer. Add in dynamic movements like arm swings or vibration, and things get even more complicated. Plus, the GNSS antennas that wearables use aren't very big to begin with.
The consequence is that the device uses lots of power trying to receive weak signals, and filtering out noise, reducing battery life. This is why traditional low power GNSS solutions tend to compromise on accuracy in order to conserve battery - and why high-accuracy solutions often drain battery quickly. LEAP was designed to avoid this compromise.
LEAP is a smart GNSS mode developed by u-blox to deliver optimal performance for wearables while also extending battery life.
Together, these innovations ensure that a device using LEAP doesn't waste power trying to receive poor quality data - and also improve accuracy, giving your device a powerful edge in the wearables space.
To further improve accuracy, LEAP includes activity-aware dynamics: tailored motion models for activities such as running, cycling, and hiking. These models account for specific movement patterns, like arm swings or stride variations, allowing the GNSS system to make smarter assumptions and corrections based on user behaviour.
LEAP has even been validated for various sports like running, hiking and cycling - and further enhancements are in development.
In side-by-side tests with standard u-blox M10 GNSS mode, LEAP reduced power consumption by up to 50%, while delivering similar or better positioning accuracy. In forest environments, LEAP delivered a circular error probable (CEP95, which essentially means that the probability of the data being at the stated accuracy is 95%) of 8 metres, compared to 14 metres from competitor products. In open-sky tests, the improvement was from 4 metres to 2 metres.
These kinds of gains matter. Whether users are running under tree cover, hiking through gorges, or biking through the city, they can trust that their wearable device is delivering accurate, energy-efficient tracking.
For wearable device designers, LEAP opens up a new range of possibilities. By delivering high-accuracy GNSS positioning at low power, it enables smaller batteries and slimmer form factors without compromising user experience.
The chip package is impressively compact at just 2.39 x 2.39 mm, making it ideal for modern wearables, including those with severe space and weight constraints. Whether you're designing a rugged GPS sports watch or a lightweight everyday fitness tracker, LEAP will fit.
It’s also a future-proof solution. Firmware upgrades, which can be delivered via external flash or a connected MCU, mean LEAP can continue to evolve after deployment. Future firmware updates could introduce new models for additional activities, further optimise power savings, or enhance positioning accuracy based on the latest innovations. This ensures that devices built with LEAP can stay competitive and adapt to emerging user needs. It supports Android systems and is fully compatible with u-blox AssistNow - enabling faster positioning and lower startup power draw. Built-in support for protocols like SUPL means LEAP can integrate seamlessly into today’s connected wearable ecosystems.
With LEAP, u-blox has redefined what’s possible for wearable GNSS. By combining low power consumption with high accuracy, it solves one of the biggest challenges in GNSS for wearables. And by making smartwatches and sports watches more capable, it gives users the freedom to explore further, train harder, and go longer between charges.
Whether you're building the next generation of fitness devices or optimising performance in ultra-compact wearables, LEAP technology is ready to help you go the distance - accurately and efficiently.
Visit the LEAP technology page to learn more about how LEAP works. If you’d like to see it in action, try our EVK-M102 evaluation kit with u-center 2.
Power and current measurement with u-center 2