Abstract
Table of Contents

Receiver Description ... 1
1 Overview .. 1
2 Navigation Configuration Settings Description .. 1
 2.1 Platform settings ... 1
 2.2 Navigation Input Filters .. 2
 2.3 Navigation Output Filters ... 2
 2.4 Static Hold ... 3
 2.5 Freezing the Course Over Ground .. 3
 2.6 Degraded Navigation ... 3
 2.6.1 2D Navigation ... 3
3 GNSS Configuration ... 3
 3.1 GLONASS ... 4
 3.2 QZSS ... 4
4 Satellite Numbering .. 4
 4.1 NMEA ... 4
 4.2 UBX ... 5
 4.3 Summary .. 5
5 SBAS Configuration Settings Description ... 5
 5.1 SBAS (Satellite Based Augmentation Systems) ... 5
 5.2 SBAS Features .. 7
 5.3 SBAS Configuration ... 8
6 Clocks and Time ... 8
 6.1 Receiver Local Time .. 8
 6.2 Navigation Epochs .. 9
 6.3 iTOW Timestamps .. 10
 6.4 UTC Representation ... 10
 6.5 Leap Seconds .. 10
 6.6 Real Time Clock .. 11
7 Serial Communication Ports Description ... 11
 7.1 TX-ready indication ... 11
 7.2 Extended TX timeout ... 12
 7.3 UART Ports ... 12
 7.4 USB Port .. 12
 7.5 DDC Port .. 13
 7.5.1 Read Access .. 13
 7.5.1.1 Random Read Access .. 14
 7.5.1.2 Current Address Read ... 15
 7.5.2 Write Access .. 15
 7.6 SPI Port .. 16
 7.6.1 Maximum SPI clock speed .. 16
8 Receiver Configuration

9 Forcing a Receiver Reset

10 Remote Inventory

11 Power Management

12 Time pulse
22.7.1 GNSS fix data .. 50
22.8 GPQ ... 51
22.8.1 Poll a standard message (if the current Talker ID is GP) .. 51
22.9 GRS .. 51
22.9.1 GNSS Range Residuals ... 51
22.10 GSA .. 52
22.10.1 GNSS DOP and Active Satellites ... 52
22.11 GST .. 53
22.11.1 GNSS Pseudo Range Error Statistics .. 53
22.12 GSV .. 54
22.12.1 GNSS Satellites in View ... 54
22.13 RMC .. 55
22.13.1 Recommended Minimum data .. 55
22.14 TXT ... 56
22.14.1 Text Transmission ... 56
22.15 VTG ... 57
22.15.1 Course over ground and Ground speed .. 57
22.16 ZDA ... 58
22.16.1 Time and Date .. 58
23 PUBX Messages .. 59
23.1 CONFIG (PUBX,41) ... 59
23.1.1 Set Protocols and Baudrate ... 59
23.2 POSITION (PUBX,00) .. 60
23.2.1 Poll a PUBX,00 message .. 60
23.2.2 Lat/Long Position Data ... 60
23.3 RATE (PUBX,40) ... 62
23.3.1 Set NMEA message output rate ... 62
23.4 SVSTATUS (PUBX,03) ... 63
23.4.1 Poll a PUBX,03 message .. 63
23.4.2 Satellite Status ... 63
23.5 TIME (PUBX,04) .. 64
23.5.1 Poll a PUBX,04 message .. 64
23.5.2 Time of Day and Clock Information .. 65

UBX Protocol ... 66
24 UBX Protocol Key Features .. 66
25 UBX Packet Structure .. 66
26 UBX Payload Definition Rules .. 66
26.1 Structure Packing ... 66
26.2 Message Naming ... 66
26.3 Number Formats ... 67
27 UBX Checksum ... 67
28 UBX Message Flow .. 68
28.1 Acknowledgement .. 68
28.2 Polling Mechanism ... 68
29 UBX Class IDs ... 68
30 UBX Messages Overview .. 69
31 ACK (0x05) ... 72
 31.1 ACK-ACK (0x05 0x01) ... 72
 31.1.1 Message Acknowledged .. 72
 31.2 ACK-NAK (0x05 0x00) ... 72
 31.2.1 Message Not-Acknowledged ... 72
32 AID (0x08) ... 73
 32.1 AID-ALM (0x08 0x30) .. 73
 32.1.1 Poll GPS Aiding Almanac Data ... 73
 32.1.2 Poll GPS Aiding Almanac Data for a SV ... 73
 32.1.3 GPS Aiding Almanac Input/Output Message ... 74
 32.2 AID-ALPSRV (0x08 0x32) ... 74
 32.2.1 ALPSRV client requests AlmanacPlus data from server 74
 32.2.2 ALPSRV server sends AlmanacPlus data to client 75
 32.2.3 ALPSRV client sends AlmanacPlus data to server 76
 32.3 AID-ALP (0x08 0x50) .. 76
 32.3.1 ALP file data transfer to the receiver ... 76
 32.3.2 Mark end of data transfer .. 77
 32.3.3 Acknowledges a data transfer .. 77
 32.3.4 Indicate problems with a data transfer ... 78
 32.3.5 Poll the AlmanacPlus status ... 78
 32.4 AID-DATA (0x08 0x10) .. 79
 32.4.1 Polls all GPS Initial Aiding Data ... 79
 32.5 AID-EPH (0x08 0x31) ... 79
 32.5.1 Poll GPS Aiding Ephemeris Data ... 79
 32.5.2 Poll GPS Aiding Ephemeris Data for a SV ... 79
 32.5.3 GPS Aiding Ephemeris Input/Output Message .. 80
 32.6 AID-HUI (0x08 0x02) .. 81
 32.6.1 Poll GPS Health, UTC and ionosphere parameters 81
 32.6.2 GPS Health, UTC and ionosphere parameters ... 81
 32.7 AID-INI (0x08 0x01) .. 82
 32.7.1 Poll GPS Initial Aiding Data .. 82
 32.7.2 Aiding position, time, frequency, clock drift .. 83
 32.8 AID-REQ (0x08 0x00) ... 84
 32.8.1 Sends a poll (AID-DATA) for all GPS Aiding Data 84
33 CFG (0x06) .. 85
 33.1 CFG-ANT (0x06 0x13) ... 85
 33.1.1 Poll Antenna Control Settings ... 85
 33.1.2 Antenna Control Settings ... 85
 33.2 CFG-CFG (0x06 0x09) ... 86
 33.2.1 Clear, Save and Load configurations ... 86
 33.3 CFG-DAT (0x06 0x06) ... 88
 33.3.1 Poll Datum Setting .. 88
33.3.2 Set User-defined Datum ... 88
33.3.3 The currently defined Datum ... 89
33.4 CFG-GNSS (0x06 0x3E) ... 90
 33.4.1 Polls the configuration of the GNSS system configuration 90
 33.4.2 GNSS system configuration ... 90
33.5 CFG-INF (0x06 0x02) ... 91
 33.5.1 Poll INF message configuration for one protocol 91
 33.5.2 Information message configuration ... 92
33.6 CFG-ITFM (0x06 0x39) ... 93
 33.6.1 Polls the Jamming/Interference Monitor configuration 93
 33.6.2 Jamming/Interference Monitor configuration 93
33.7 CFG-MSG (0x06 0x01) ... 94
 33.7.1 Poll a message configuration ... 94
 33.7.2 Set Message Rate(s) .. 94
 33.7.3 Set Message Rate ... 95
33.8 CFG-NAV5 (0x06 0x24) ... 95
 33.8.1 Poll Navigation Engine Settings ... 95
 33.8.2 Navigation Engine Settings ... 96
33.9 CFG-NAVX5 (0x06 0x23) .. 97
 33.9.1 Poll Navigation Engine Expert Settings 97
 33.9.2 Navigation Engine Expert Settings ... 98
33.10 CFG-NMEA (0x06 0x17) .. 99
 33.10.1 Poll the NMEA protocol configuration 99
 33.10.2 NMEA protocol configuration (deprecated) 100
 33.10.3 NMEA protocol configuration .. 101
33.11 CFG-NVS (0x06 0x22) ... 103
 33.11.1 Clear, Save and Load non-volatile storage data 103
33.12 CFG-PM2 (0x06 0x3B) ... 105
 33.12.1 Poll extended Power Management configuration 105
 33.12.2 Extended Power Management configuration 105
33.13 CFG-PRT (0x06 0x00) ... 107
 33.13.1 Polls the configuration of the used I/O Port 107
 33.13.2 Polls the configuration for one I/O Port 107
 33.13.3 Port Configuration for UART .. 107
 33.13.4 Port Configuration for USB Port ... 110
 33.13.5 Port Configuration for SPI Port .. 111
 33.13.6 Port Configuration for DDC Port 114
33.14 CFG-RATE (0x06 0x08) ... 116
 33.14.1 Poll Navigation/Measurement Rate Settings 116
 33.14.2 Navigation/Measurement Rate Settings 116
33.15 CFG-RINV (0x06 0x34) .. 117
 33.15.1 Poll contents of Remote Inventory .. 117
 33.15.2 Contents of Remote Inventory .. 117
33.16 CFG-RST (0x06 0x04) .. 118
33.16.1 Reset Receiver / Clear Backup Data Structures ... 118
33.17 CFG-RXM (0x06 0x11) .. 119
33.17.1 Poll RXM configuration .. 119
33.17.2 RXM configuration .. 119
33.18 CFG-SBAS (0x06 0x16) ... 120
33.18.1 Poll contents of SBAS Configuration .. 120
33.18.2 SBAS Configuration ... 120
33.19 CFG-TPS (0x06 0x31) .. 122
33.19.1 Poll Time Pulse Parameters ... 122
33.19.2 Poll Time Pulse Parameters ... 122
33.19.3 Time Pulse Parameters .. 122
33.20 CFG-USB (0x06 0x1B) ... 124
33.20.1 Poll a USB configuration ... 124
33.20.2 USB Configuration .. 124
34 INF (0x04) .. 126
34.1 INF-DEBUG (0x04 0x04) .. 126
34.1.1 ASCII String output, indicating debug output ... 126
34.2 INF-ERROR (0x04 0x00) ... 126
34.2.1 ASCII String output, indicating an error ... 126
34.3 INF-NOTICE (0x04 0x02) .. 127
34.3.1 ASCII String output, with informational contents .. 127
34.4 INF-TEST (0x04 0x03) ... 127
34.4.1 ASCII String output, indicating test output ... 127
34.5 INF-WARNING (0x04 0x01) ... 128
34.5.1 ASCII String output, indicating a warning .. 128
35 MON (0x0A) ... 129
35.1 MON-HW2 (0x0A 0x0B) ... 129
35.1.1 Extended Hardware Status ... 129
35.2 MON-HW (0x0A 0x09) .. 130
35.2.1 Hardware Status ... 130
35.3 MON-IO (0x0A 0x02) ... 131
35.3.1 I/O Subsystem Status .. 131
35.4 MON-MSGPP (0x0A 0x06) .. 132
35.4.1 Message Parse and Process Status .. 132
35.5 MON-RXBUF (0x0A 0x07) .. 132
35.5.1 Receiver Buffer Status ... 132
35.6 MON-RXR (0x0A 0x21) .. 133
35.6.1 Receiver Status Information .. 133
35.7 MON-TXBUF (0x0A 0x08) .. 133
35.7.1 Transmitter Buffer Status ... 133
35.8 MON-VER (0x0A 0x04) .. 134
35.8.1 Poll Receiver/Software Version ... 134
35.8.2 Receiver/Software Version ... 135
36 NAV (0x01) ... 136
36.1 NAV-CLOCK (0x01 0x22) ... 136
 36.1.1 Clock Solution.. 136
36.2 NAV-DGPS (0x01 0x31) ... 136
 36.2.1 DGPS Data Used for NAV.. 136
36.3 NAV-DOP (0x01 0x04) ... 137
 36.3.1 Dilution of precision ... 137
36.4 NAV-POSECEF (0x01 0x01) ... 138
 36.4.1 Position Solution in ECEF.. 138
36.5 NAV-POSLLH (0x01 0x02) ... 138
 36.5.1 Geodetic Position Solution .. 138
36.6 NAV-PVT (0x01 0x07) ... 139
 36.6.1 Navigation Position Velocity Time Solution.......................... 139
36.7 NAV-SBAS (0x01 0x32) ... 141
 36.7.1 SBAS Status Data ... 141
36.8 NAV-SOL (0x01 0x06) ... 142
 36.8.1 Navigation Solution Information .. 142
36.9 NAV-STATUS (0x01 0x03) .. 144
 36.9.1 Receiver Navigation Status .. 144
36.10 NAV-SVINFO (0x01 0x30) .. 146
 36.10.1 Space Vehicle Information .. 146
36.11 NAV-TIMEGPS (0x01 0x20) .. 148
 36.11.1 GPS Time Solution ... 148
36.12 NAV-TIMEUTC (0x01 0x21) .. 149
 36.12.1 UTC Time Solution ... 149
36.13 NAV-VELECEF (0x01 0x11) .. 150
 36.13.1 Velocity Solution in ECEF .. 150
36.14 NAV-VELNED (0x01 0x12) ... 150
 36.14.1 Velocity Solution in NED ... 150
37 RXM (0x02) ... 152
 37.1 RXM-PMREQ (0x02 0x41) ... 152
 37.1.1 Requests a Power Management task 152
37.2 R XM-SVSI (0x02 0x20) .. 152
 37.2.1 SV Status Info ... 152
38 TIM (0x0D) ... 154
 38.1 TIM-TM2 (0x0D 0x03) .. 154
 38.1.1 Time mark data ... 154
 38.2 TIM-TP (0x0D 0x01) ... 155
 38.2.1 Time Pulse Timedata ... 155
 38.3 TIM-VRFY (0x0D 0x06) ... 156
 38.3.1 Sourced Time Verification .. 156
RTCM Protocol ... 158
39 Introduction .. 158
40 Supported Messages ... 158
41 Configuration .. 158
Receiver Description

1 Overview
The Receiver Description Including Protocol Specification is an important resource for integrating and configuring u-blox positioning chips and modules. This document has a modular structure and it is not necessary to read it from the beginning to the end. There are 2 main sections: The Receiver Description and the Protocol Specification.

The Receiver Description describes the software aspects of system features and configuration of u-blox positioning technology. The Receiver Description is structured according to areas of functionality, with links provided to the corresponding NMEA and UBX messages, which are described in the Protocol Specification.

The Protocol Specification is a reference describing the software messages used by your u-blox GNSS (Global Navigation Satellite System: e.g. GPS, GLONASS, QZSS) receiver and is organized by the specific NMEA and UBX messages.

This document provides general information on u-blox GNSS receivers. Some information might not apply to certain products. Refer to the product Data Sheet and/or Hardware Integration Manual for possible restrictions or limitations.

2 Navigation Configuration Settings Description
This section relates to the configuration message UBX-CFG-NAV5.

2.1 Platform settings
u-blox positioning technology supports different dynamic platform models (see table below) to adjust the navigation engine to the expected application environment. These platform settings can be changed dynamically without performing a power cycle or reset. The settings improve the receiver’s interpretation of the measurements and thus provide a more accurate position output. Setting the receiver to an unsuitable platform model for the given application environment is likely to result in a loss of receiver performance and position accuracy.

<table>
<thead>
<tr>
<th>Dynamic Platform Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
</tr>
<tr>
<td>Portable</td>
</tr>
<tr>
<td>Stationary</td>
</tr>
<tr>
<td>Pedestrian</td>
</tr>
<tr>
<td>Automotive</td>
</tr>
<tr>
<td>At sea</td>
</tr>
<tr>
<td>Airborne <1g</td>
</tr>
<tr>
<td>Airborne <2g</td>
</tr>
<tr>
<td>Airborne <4g</td>
</tr>
</tbody>
</table>
Dynamic Platform Model Details

<table>
<thead>
<tr>
<th>Platform</th>
<th>Max Altitude [m]</th>
<th>MAX Horizontal Velocity [m/s]</th>
<th>MAX Vertical Velocity [m/s]</th>
<th>Sanity check type</th>
<th>Max Position Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable</td>
<td>12000</td>
<td>310</td>
<td>50</td>
<td>Altitude and Velocity</td>
<td>Medium</td>
</tr>
<tr>
<td>Stationary</td>
<td>9000</td>
<td>10</td>
<td>6</td>
<td>Altitude and Velocity</td>
<td>Small</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>9000</td>
<td>30</td>
<td>20</td>
<td>Altitude and Velocity</td>
<td>Small</td>
</tr>
<tr>
<td>Automotive</td>
<td>6000</td>
<td>84</td>
<td>15</td>
<td>Altitude and Velocity</td>
<td>Medium</td>
</tr>
<tr>
<td>At sea</td>
<td>500</td>
<td>25</td>
<td>5</td>
<td>Altitude and Velocity</td>
<td>Medium</td>
</tr>
<tr>
<td>Airborne <1g</td>
<td>50000</td>
<td>100</td>
<td>100</td>
<td>Altitude</td>
<td>Large</td>
</tr>
<tr>
<td>Airborne <2g</td>
<td>50000</td>
<td>250</td>
<td>100</td>
<td>Altitude</td>
<td>Large</td>
</tr>
<tr>
<td>Airborne <4g</td>
<td>50000</td>
<td>500</td>
<td>100</td>
<td>Altitude</td>
<td>Large</td>
</tr>
</tbody>
</table>

Dynamic platforms designed for high acceleration systems (e.g. airborne <2g) can result in a higher standard deviation in the reported position.

2.2 Navigation Input Filters

The navigation input filters in CFG-NAV5 mask the input data of the navigation engine.

These settings are already optimized. Do not change any parameters unless advised by u-blox support engineers.

Navigation Input Filter parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fixMode</td>
<td>By default, the receiver calculates a 3D position fix if possible but reverts to 2D position if necessary (Auto 2D/3D). The receiver can be forced to only calculate 2D (2D only) or 3D (3D only) positions.</td>
</tr>
<tr>
<td>fixedAlt and fixedAltVar</td>
<td>The fixed altitude is used if fixMode is set to 2D only. A variance greater than zero must also be supplied.</td>
</tr>
<tr>
<td>minElev</td>
<td>Minimum elevation of a satellite above the horizon in order to be used in the navigation solution. Low elevation satellites may provide degraded accuracy, due to the long signal path through the atmosphere.</td>
</tr>
<tr>
<td>cnoThreshNumSVs and cnoThresh</td>
<td>A navigation solution will only be attempted if there are at least the given number of SVs with signals at least as strong as the given threshold.</td>
</tr>
</tbody>
</table>

See also comments in section Degraded Navigation below.

2.3 Navigation Output Filters

The result of a navigation solution is initially classified by the fix type (as detailed in the fixType field of UBX-NAV-PVT message). This distinguishes between failures to obtain a fix at all ("No Fix") and cases where a fix has been achieved, which are further subdivided into specific types of fixes (e.g. 2D, 3D, dead reckoning).

Where a fix has been achieved, a check is made to determine whether the fix should be classified as valid or not. A fix is only valid if it passes the navigation output filters as defined in UBX-CFG-NAV5. In particular, both PDOP and accuracy values must lie below the respective limits.

Valid fixes are marked using the valid flag in certain NMEA messages (see Position Fix Flags in NMEA) and the gnssFixOK flag in UBX-NAV-PVT message.

Important: Users are recommended to check the gnssFixOK flag in the UBX-NAV-PVT or the NMEA valid flag. Fixes not marked valid should not normally be used.

The UBX-NAV-SOL and UBX-NAV-STATUS messages also report whether a fix is valid in their gpsFixOK and GPSfixOk flags. These messages have only been retained for backwards compatibility.
and users are recommended to use the UBX-NAV-PVT message in preference.

The UBX-CFG-NAV5 message also defines TDOP and time accuracy values that are used in order to establish whether a fix is regarded as locked to GNSS or not and, as a consequence of this, which time pulse setting has to be used. Fixes that do not meet both criteria will be regarded as unlocked to GNSS and the corresponding time pulse settings of UBX-CFG-TP5 will be used to generate a time pulse.

2.4 Static Hold

Static Hold Mode allows the navigation algorithms to decrease the noise in the position output when the velocity is below a pre-defined ‘Static Hold Threshold’. This reduces the position wander caused by environmental factors such as multi-path and improves position accuracy especially in stationary applications. By default, static hold mode is disabled.

If the speed drops below the defined ‘Static Hold Threshold’, the Static Hold Mode will be activated. Once Static Hold Mode has been entered, the position output is kept static and the velocity is set to zero until there is evidence of movement again. Such evidence can be velocity, acceleration, changes of the valid flag (e.g. position accuracy estimate exceeding the Position Accuracy Mask, see also section Navigation Output Filters), position displacement, etc.

2.5 Freezing the Course Over Ground

The receiver derives the course over ground from the GNSS velocity information. If the velocity cannot be calculated with sufficient accuracy (e.g., with bad signals) or if the absolute speed value is very low (under 0.1m/s) then the course over ground value becomes inaccurate too. In this case the course over ground value is frozen, i.e. the previous value is kept and its accuracy is degraded over time. These frozen values will not be output in the NMEA messages NMEA-RMC and NMEA-VTG unless the NMEA protocol is explicitly configured to do so (see NMEA Protocol Configuration).

2.6 Degraded Navigation

Degraded navigation describes all navigation modes which use less than 4 Satellite Vehicles (SVs).

2.6.1 2D Navigation

If the receiver only has 3 SVs for calculating a position, the navigation algorithm uses a constant altitude to compensate for the missing fourth SV. When an SV is lost after a successful 3D fix (min. 4 SVs available), the altitude is kept constant at the last known value. This is called a 2D fix.

u-blox positioning technology does not calculate any solution with less than 3 SVs. Only u-blox timing receivers can, when stationary, calculate a timing solution with only 1 SV.

3 GNSS Configuration

The latest products from u-blox are multi-GNSS receivers capable of receiving and processing signals from multiple Global Navigation Satellite Systems (GNSS).

u-blox multi-GNSS receivers can acquire and track satellites from multiple GNSS systems and utilize them in positioning. u-blox multi-GNSS receivers can be configured to process either:

- GPS, SBAS (e.g. WAAS, EGNOS, MSAS) and QZSS L1 signals, centred on 1575.42MHz L1 frequency
- GLONASS L1 signals, centred on 1602.00MHz L1 frequency

Use the UBX-CFG-GNSS message to configure the u-blox receiver into the required mode of operation. This message allows the user to specify which GNSS signals should be processed along with limits on how many tracking channels should be allocated to each GNSS. The receiver will respond to such a request with a UBX-ACK-ACK message if it can support the requested configuration or a UBX-ACK-NAK message if not.
3.1 GLONASS

GLONASS is a GNSS operated by Russia. It has a number of significant differences when compared to GPS. In most cases u-blox receivers operate in a very similar manner when they are configured to use GLONASS signals instead of GPS. However some aspects of receiver output are likely to be noticeably affected:

- NMEA messages will change to use the GLONASS talker identifier GL (see section NMEA Protocol Configuration).
- UBX messages will report different satellite identity numbers (see section Satellite Numbering).
- Positioning accuracy with GLONASS only satellites may be worse than with only GPS satellites. This is because of reduced availability; the GLONASS constellation has less satellites (at the time of writing, nominally 24 for GLONASS instead of 32 for GPS). Additionally, GLONASS signals have a lower chipping rate which reduces accuracy.
- The identity of GLONASS satellites is determined by decoding specific parts of their data transmission. Therefore newly acquired GLONASS signals may be reported as coming from an “unknown” satellite until they are identified. From then on, satellites are reported using the correct satellite identity.
- As GLONASS uses a time base aligned directly to UTC, GLONASS receivers are affected by leap seconds, when the UTC time base is occasionally re-calibrated. As a consequence, users should be prepared for the receiver to restart itself if GLONASS signals are being tracked when a leap second occurs.

4 Satellite Numbering

4.1 NMEA

The NMEA protocol (V2.3) identifies satellites with a two digit number, reserving the numbers 1 to 32 for GPS, 33-64 for SBAS and 65-96 for GLONASS. So, for example, GLONASS SV4 is reported using number 68. u-blox receivers support this method in their NMEA output when “strict” SV numbering is selected. In most cases this is the default setting, but can be checked or set using UBX-CFG-NMEA.

Unfortunately there is currently no standard way of identifying satellites from any other GNSS within the NMEA protocol. In order to support QZSS within current receivers and prepare for support of other systems (e.g. Galileo) in future receivers, an "extended" SV numbering scheme can be enabled (using UBX-CFG-NMEA). This uses the NMEA-defined numbers where possible, but adds other number ranges to support other GNSS. Note however that these non-standard extensions require 3 digit numbers, which may not be supported by some NMEA parsing software. For example QZSS satellites are reported using numbers in the range 193 to 197.

3.2 QZSS

QZSS is a GNSS operated by Japan Aerospace Exploration Agency (JAXA). It is intended as an enhancement to GPS which increases availability and positional accuracy. This can be achieved by the QZSS system transmitting GPS-compatible signals in the GPS bands.

NMEA messages will show the QZSS satellites only if configured accordingly (see section Satellite Numbering).
4.2 UBX

UBX protocol messages use two different numbering schemes. Many UBX messages (e.g. UBX-NAV-SVINFO) use a single byte for the satellite identifier (normally named "svId"). This uses similar numbering to the "extended" NMEA scheme and is merely an extension of the scheme in use for previous generations of u-blox receivers.

With ever increasing numbers of GNSS satellites, this scheme will have to be phased out in future u-blox receivers (as numbers greater than 255 will become necessary). Consequently, newer messages use a more sophisticated, flexible and future-proof approach. This involves having a separate gnssId to identify which GNSS type the satellite is part of and a simple svId which indicates which number the satellite is in that system. In nearly all cases, this means that the "svId" is the natural number associated with the satellite. For example the GLONASS SV4 is identified as gnssId 6, svId 4, while the GPS SV4 is gnssId 0, svId 4.

GNSS Identifiers

<table>
<thead>
<tr>
<th>gnssId</th>
<th>GNSS Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GPS</td>
</tr>
<tr>
<td>1</td>
<td>SBAS</td>
</tr>
<tr>
<td>5</td>
<td>QZSS</td>
</tr>
<tr>
<td>6</td>
<td>GLONASS</td>
</tr>
</tbody>
</table>

Other values will be added as support for other GNSS types is enabled in u-blox receivers.

GLONASS satellites can be tracked before they have been identified. In UBX messages, such unknown satellite numbers are always reported with svId 255.

4.3 Summary

A summary of all the SV numbering schemes is provided in the following table.

Satellite numbering

<table>
<thead>
<tr>
<th>GNSS Type</th>
<th>SV range</th>
<th>UBX gnssId:svId</th>
<th>UBX svId</th>
<th>NMEA (strict)</th>
<th>NMEA (extended)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>G1-G32</td>
<td>0:1-32</td>
<td>1-32</td>
<td>1-32</td>
<td>1-32</td>
</tr>
<tr>
<td>SBAS</td>
<td>S120-S158</td>
<td>1:120-158</td>
<td>120-158</td>
<td>33-64</td>
<td>33-64,152-158</td>
</tr>
<tr>
<td>QZSS</td>
<td>Q1-Q5</td>
<td>5:1-5</td>
<td>193-197</td>
<td>-</td>
<td>193-197</td>
</tr>
</tbody>
</table>

5 SBAS Configuration Settings Description

5.1 SBAS (Satellite Based Augmentation Systems)

SBAS (Satellite Based Augmentation System) is an augmentation technology for GPS, which calculates GPS integrity and correction data with RIMS (Ranging and Integrity Monitoring Stations) on the ground and uses geostationary satellites to broadcast GPS integrity and correction data to GPS users. The correction data is transmitted on the GPS L1 frequency (1575.42 MHz), and therefore no additional receiver is required to make use of the correction and integrity data.

Currently, there are no operational augmentation systems for any GNSS other than GPS. Consequently this section only addresses GPS.
SBAS Principle

There are several compatible SBAS systems available or in development all around the world:

- **WAAS (Wide Area Augmentation System)** for North America has been in operation since 2003.
- **MSAS (Multi-Functional Satellite Augmentation System)** for Asia has been in operation since 2007.
- **EGNOS (European Geostationary Navigation Overlay Service)** has been in operation since 2009.
- **GAGAN (GPS Aided Geo Augmented Navigation)**, developed by the Indian government is at the time of writing in test mode.

SBAS support allows u-blox GPS technology to take full advantage of the augmentation systems that are currently available (WAAS, EGNOS, MSAS), as well as those being tested and planned (such as GAGAN). With SBAS enabled the user benefits from additional satellites for ranging (navigation). u-blox GPS technology uses the available SBAS Satellites for navigation just like GPS satellites, if the SBAS satellites offer this service.

To improve position accuracy SBAS uses different types of correction data:

- **Fast Corrections** for short-term disturbances in GPS signals (due to clock problems, etc).
- **Long-term corrections** for GPS clock problems, broadcast orbit errors etc.
- **Ionosphere corrections** for Ionosphere activity

Another benefit of SBAS is the use of GPS integrity information. In this way SBAS Control stations can ‘disable’ the use of GPS satellites within a 6 second alarm time in case of major GPS satellite problems. If integrity monitoring is enabled, u-blox GPS technology only uses satellites, for which integrity information is available.

For more information on SBAS and associated services please refer to

- gps.faa.gov for information on WAAS.
- www.esa.int for information on EGNOS.
- www.essp-sas.eu for information about European Satellite Services Provider (ESSP), the EGNOS operations manager.
SBAS satellites tracked (as of March 2012)

<table>
<thead>
<tr>
<th>Identification</th>
<th>Position</th>
<th>GPS PRN</th>
<th>SBAS Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR</td>
<td>98° W</td>
<td>133</td>
<td>WAAS</td>
</tr>
<tr>
<td>PanAmSat Galaxy XV</td>
<td>133.1° W</td>
<td>135</td>
<td>WAAS</td>
</tr>
<tr>
<td>TeleSat Anik F1R</td>
<td>107.3° W</td>
<td>138</td>
<td>WAAS</td>
</tr>
<tr>
<td>Inmarsat 3F2 AOR-E</td>
<td>15.5° W</td>
<td>120</td>
<td>EGNOS</td>
</tr>
<tr>
<td>Artemis</td>
<td>21.5° W</td>
<td>124</td>
<td>EGNOS</td>
</tr>
<tr>
<td>Inmarsat 3F5 IOR-W</td>
<td>25° E</td>
<td>126</td>
<td>EGNOS</td>
</tr>
<tr>
<td>MTSAT-1R</td>
<td>140° E</td>
<td>129</td>
<td>MSAS</td>
</tr>
<tr>
<td>MTSAT-2</td>
<td>145° E</td>
<td>137</td>
<td>MSAS</td>
</tr>
<tr>
<td>Inmarsat 4 F1</td>
<td>55.1° E</td>
<td>127</td>
<td>GAGAN</td>
</tr>
</tbody>
</table>

5.2 SBAS Features

This u-blox SBAS implementation is, in accordance with standard RTCA/DO-229D, a class Beta-1 equipment. All timeouts etc. are chosen for the En Route Case. Do not use this equipment under any circumstances for safety of life applications!

u-blox receivers are capable of receiving multiple SBAS signals in parallel, even from different SBAS systems (WAAS, EGNOS, MSAS, etc.). They can be tracked and used for navigation simultaneously. Every SBAS satellite tracked utilizes one vacant receiver tracking channel. Only the number of receiver channels limits the total number of satellites used. Each SBAS satellite, which broadcasts ephemeris or almanac information, can be used for navigation, just like a normal GPS satellite.

For receiving correction data, the u-blox GPS receiver automatically chooses the best SBAS satellite as its primary source. It will select only one since the information received from other SBAS satellites is redundant and/or could be inconsistent. The selection strategy is determined by the proximity of the satellites, the services offered by the satellite, the configuration of the receiver (Testmode allowed/disallowed, Integrity enabled/disabled) and the signal link quality to the satellite.

In case corrections are available from the chosen SBAS satellite and used in the navigation calculation, the DGPS flag is set in the receiver’s output protocol messages (see NAV-PVT, NAV-SOL, NAV-STATUS, NAV-SVINFO, NMEA Position Fix Flags description). The message NAV-SBAS provides detailed information about which corrections are available and applied.

The most important SBAS feature for accuracy improvement is Ionosphere correction. The measured data from RIMS stations of a region are combined to a TEC (Total Electron Content) Map. This map is transferred to the receiver via the satellites to allow a correction of the ionosphere error on each received satellite.

Supported SBAS messages

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Message Content</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(0/2)</td>
<td>Test Mode</td>
<td>All</td>
</tr>
<tr>
<td>1</td>
<td>PRN Mask Assignment</td>
<td>Primary</td>
</tr>
<tr>
<td>2, 3, 4, 5</td>
<td>Fast Corrections</td>
<td>Primary</td>
</tr>
<tr>
<td>6</td>
<td>Integrity</td>
<td>Primary</td>
</tr>
<tr>
<td>7</td>
<td>Fast Correction Degradation</td>
<td>Primary</td>
</tr>
<tr>
<td>9</td>
<td>Satellite Navigation (Ephemeris)</td>
<td>All</td>
</tr>
<tr>
<td>10</td>
<td>Degradation</td>
<td>Primary</td>
</tr>
<tr>
<td>12</td>
<td>Time Offset</td>
<td>Primary</td>
</tr>
<tr>
<td>17</td>
<td>Satellite Almanac</td>
<td>All</td>
</tr>
<tr>
<td>18</td>
<td>Ionosphere Grid Point Assignment</td>
<td>Primary</td>
</tr>
</tbody>
</table>
Supported SBAS messages continued

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Message Content</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Mixed Fast / Long term Corrections</td>
<td>Primary</td>
</tr>
<tr>
<td>25</td>
<td>Long term Corrections</td>
<td>Primary</td>
</tr>
<tr>
<td>26</td>
<td>Ionosphere Delays</td>
<td>Primary</td>
</tr>
</tbody>
</table>

Each satellite services a specific region and its correction signal is only useful within that region. Planning is crucial to determine the best possible configuration, especially in areas where signals from different SBAS systems can be received:

Example 1: SBAS Receiver in North America

In the eastern parts of North America, be careful that EGNOS satellites do not take preference over WAAS satellites, the satellites from the EGNOS system should be disallowed using the PRN Mask.

Example 2: SBAS Receiver in Europe

Some WAAS satellites can be received in the western parts of Europe, therefore it is recommended that the satellites from all but the EGNOS system should be disallowed using the PRN Mask.

> Although u-blox receivers try to select the best available SBAS correction data, it is recommended to configure them to disallow using unwanted SBAS satellites.

> The EGNOS SBAS system does not provide the satellite ranging function.

5.3 SBAS Configuration

To configure the SBAS functionalities use the UBX proprietary message `UBX-CFG-SBAS` (SBAS Configuration).

SBAS Configuration parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode - SBAS Subsystem</td>
<td>Enables or disables the SBAS subsystem</td>
</tr>
<tr>
<td>Mode - Allow test mode usage</td>
<td>Allow / Disallow SBAS usage from satellites in Test Mode (Message 0)</td>
</tr>
<tr>
<td>Services/Usage - Ranging</td>
<td>Use the SBAS satellites for navigation</td>
</tr>
<tr>
<td>Services/Usage - Apply SBAS</td>
<td>Combined enable/disable switch for Fast-, Long-Term and Ionosphere Corrections</td>
</tr>
<tr>
<td>correction data</td>
<td></td>
</tr>
<tr>
<td>Services/Usage - Apply integrity information</td>
<td>Use integrity data</td>
</tr>
<tr>
<td>Number of tracking channels</td>
<td>Should be set using <code>UBX-CFG-GNSS</code>. The field in <code>UBX-CFG-SBAS</code> is no longer supported.</td>
</tr>
<tr>
<td>PRN Mask</td>
<td>Allows selectively enabling/disabling SBAS satellites (e.g. restrict SBAS usage to WAAS-only).</td>
</tr>
</tbody>
</table>

By default SBAS is enabled with three prioritized SBAS channels and it will use any received SBAS satellites (except for those in test mode) for navigation, ionosphere parameters and corrections.

6 Clocks and Time

6.1 Receiver Local Time

The receiver is dependent on a local oscillator (normally a TCXO or Crystal oscillator) for both the operation of its radio parts and also for timing within its signal processing. No matter what the nominal frequency the local oscillator is (e.g. 26MHz), u-blox receivers subdivide the oscillator signal to provide a 1kHz reference clock signal which is used to drive many of the receiver’s processes. In particular the measurement of satellite signals is arranged to happen synchronised with the “ticking” of this 1kHz clock signal.
When the receiver first starts, it has no information about how these clock ticks relate to other time systems; it can only count time in 1 millisecond steps. However, as the receiver derives information from the satellites it is tracking or from aiding messages, it estimates the time that each of these 1kHz clock ticks takes place in the time-base of the relevant GNSS system. In previous versions of the firmware for u-blox receivers this was always the GPS time-base, but in the latest firmware it could be GPS or GLONASS and in the future it could also be other GNSS systems (such as Galileo, Compass…. etc). This estimate of GNSS time based on the local 1kHz clock is called **receiver local time**.

As receiver local time is a mapping of the local 1kHz reference onto a GNSS time-base, it may experience occasional discontinuities, especially when the receiver first starts up and the information it has about the time-base is changing. Indeed after a cold start receiver local time will indicate the length of time that the receiver has been running. However, when the receiver obtains some credible timing information from a satellite or aiding message, it will jump to an estimate of GNSS time.

6.2 Navigation Epochs

Each navigation solution is triggered by the tick of the 1kHz clock nearest to the desired navigation solution time. This tick is referred to as a **navigation epoch**. If the navigation solution attempt is successful, one of the results is an accurate measurement of time in the time-base of the chosen GNSS system, called **GNSS system time**. The difference between the calculated GNSS system time and receiver local time is called the **clock bias** (and the **clock drift** is the rate at which this bias is changing).

In practice the receiver’s local oscillator will not be as stable as the atomic clocks to which GNSS systems are referenced and consequently clock bias will tend to accumulate. However, when selecting the next navigation epoch, the receiver will always try to use the 1kHz clock tick which it estimates to be closest to the desired fix period as measured in GNSS system time. Consequently the number of 1kHz clock ticks between fixes will occasionally vary (so when producing one fix per second, there will normally be 1000 clock ticks between fixes, but sometimes, to correct drift away from GNSS system time, there will be 999 or 1001).

The GNSS system time calculated in the navigation solution is always converted to a time in both the GPS and UTC time-bases for output.

Clearly when the receiver has chosen to use the GPS time-base for its GNSS system time, conversion to GPS time requires no work at all, but conversion to UTC requires knowledge of the number of leap seconds since GPS time started (and other minor correction terms). The relevant GPS to UTC conversion parameters are transmitted periodically (every 12.5 minutes) by GPS satellites, but can also be supplied to the receiver via the **UBX-AID-HUI** aiding message. By contrast when the receiver has chosen to use the GLONASS time-base as its GNSS system time, conversion to GPS time is more difficult as it requires knowledge of the difference between the two time-bases, but conversion to UTC is easier (as GLONASS time is closely linked to UTC).

Where insufficient information is available for the receiver to perform any of these time-base conversions precisely, pre-defined default offsets are used. Consequently plausible times are nearly always generated, but they may be wrong by a few seconds (especially shortly after receiver start). Depending on the configuration of the receiver, such “invalid” times may well be output, but with flags indicating their state (e.g. the “valid” flags in **UBX-NAV-PVT**).

Future u-blox receivers are likely to employ multiple GNSS system times and/or receiver local times (in order to support multiple GNSS systems in parallel), so users should not rely on UBX messages that report GNSS system time or receiver local time being supported in future. It is therefore recommended to give preference to those messages that report UTC time.
6.3 iTOW Timestamps

All the main UBX-NAV messages (and some other messages) contain an iTOW field which indicates the GPS time at which the navigation epoch occurred. Messages with the same iTOW value can be assumed to have come from the same navigation solution.

Note that iTOW values may not be valid (i.e. they may have been generated with insufficient conversion data) and therefore it is not recommended to use the iTOW field for any other purpose. If reliable absolute time information is required, users are recommended to use the UBX-NAV-TIMEUTC, UBX-NAV-TIMEGPS, UBX-NAV-PVT or UBX-NAV-SOL messages, which contain additional fields that indicate the validity and accuracy of the calculated times.

The original designers of GPS chose to express time/date as an integer week number (starting with the first full week in January 1980) and a time of week (often abbreviated to TOW) expressed in seconds. Manipulating time/date in this form is far easier for digital systems than the more "conventional" year/month/day, hour/minute/second representation. Consequently, most GPS/GNSS receivers use this representation internally, only converting to a more "conventional forms" at external interfaces. The iTOW field is the most obvious externally visible consequence of this internal representation.

6.4 UTC Representation

UTC time is used in many NMEA and UBX messages. In NMEA messages it is always reported rounded to the nearest hundredth of a second. Consequently, it is normally reported with two decimal places (e.g. 124923.52). What is more, although compatibility mode (selected using UBX-CFG-NMEA) requires three decimal places, rounding to the nearest hundredth of a second remains, so the extra digit is always 0.

UTC time is also reported within some UBX messages, such as UBX-NAV-TIMEUTC and UBX-NAV-PVT. In these messages date and time are separated into seven distinct integer fields. Six of these (year, month, day, hour, min and sec) have fairly obvious meanings and are all guaranteed to match the corresponding values in NMEA messages generated by the same navigation epoch. This facilitates simple synchronisation between associated UBX and NMEA messages.

The seventh field is called nano and it contains the number of nanoseconds by which the rest of the time and date fields need to be corrected to get the precise time. So, for example, the UTC time 12:49:23.521 would be reported as: hour: 12, min: 49, sec: 23, nano: 521000000.

It is however important to note that the first six fields are the result of rounding to the nearest hundredth of a second. Consequently the nano value can range from -5000000 (i.e. -5 ms) to +994999999 (i.e. nearly 995 ms).

When the nano field is negative, the number of seconds (and maybe minutes, hours, days, months or even years) will have been rounded up. Therefore, some or all of them will need to be adjusted in order to get the correct time and date. Thus in an extreme example, the UTC time 23:59:59.9993 on 31st December 2011 would be reported as: year: 2012, month: 1, day: 1, hour: 0, min: 0, sec: 0, nano: -700000.

Of course, if a resolution of one hundredth of a second is adequate, negative nano values can simply be rounded up to 0 and effectively ignored.

6.5 Leap Seconds

Occasionally it is decided (by one of the international time keeping bodies) that, due to the slightly uneven spin rate of the Earth, UTC has moved sufficiently out of alignment with mean solar time (i.e. the Sun no longer appears directly overhead at 0 longitude at midday). A "leap second" is therefore announced to bring UTC back into close alignment. This normally involves adding an extra second to the last minute of the year, but it can also happen on 30th June. When this happens UTC clocks are expected to go from 23:59:59 to 23:59:60.
and only then on to 00:00:00.
It is also theoretically possible to have a negative leap second, in which case there will only be 59 seconds in a minute and 23:59:58 will be followed by 00:00:00.
u-blox receivers are designed to handle leap seconds in their UTC output and consequently users processing UTC times from either NMEA and UBX messages should be prepared to handle minutes that are either 59 or 61 seconds long.

Note that the behavior of GLONASS signals during leap seconds is not well defined. As a consequence, users should be prepared for the receiver to restart itself if GLONASS signals are being tracked when a leap second occurs.

6.6 Real Time Clock
u-blox receivers contain circuitry to support a real time clock, which (if correctly fitted and powered) keeps time while the receiver is otherwise powered off. When the receiver powers up, it attempts to use the real time clock to initialise receiver local time and in most cases this leads to appreciably faster first fixes.

7 Serial Communication Ports Description
u-blox positioning technology comes with a highly flexible communication interface. It supports the NMEA and the proprietary UBX protocols, and is truly multi-port and multi-protocol capable. Each protocol (UBX, NMEA) can be assigned to several ports at the same time (multi-port capability) with individual settings (e.g. baud rate, message rates, etc.) for each port. It is even possible to assign more than one protocol (e.g. UBX protocol and NMEA at the same time) to a single port (multi-protocol capability), which is particularly useful for debugging purposes.

To enable a message on a port the UBX and/or NMEA protocol must be enabled on that port using the UBX proprietary message CFG-PRT. This message also allows changing port-specific settings (baud rate, address etc.). See CFG-MSG for a description of the mechanism for enabling and disabling messages.

The following table shows the port numbers used. Note that any numbers not listed are reserved for future use.

<table>
<thead>
<tr>
<th>Port Number assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port #</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

7.1 TX-ready indication
This feature enables each port to define a corresponding pin, which indicates if bytes are ready to be transmitted. By default, this feature is disabled. For USB, this feature is configurable but might not behave as described below due to a different internal transmission mechanism. If the number of pending bytes reaches the threshold configured for this port, the corresponding pin will become active (configurable active-low or active-high), and stay active until the last bytes have been transferred from software to hardware (note that this is not necessarily equal to all bytes transmitted, i.e. after the pin has become inactive, up to 16 bytes can still need to be transferred to the host).

The TX-ready pin can be selected from all PIOs which are not in use (see MON-HW for a list of the PIOs and their mapping), each TX-ready pin is exclusively for one port and cannot be shared. If the PIO is invalid or already in use, only the configuration for the TX-ready pin is ignored, the rest of the port configuration is applied if valid.
The acknowledge message does not indicate if the TX-ready configuration is successfully set, it only indicates the successful configuration of the port. To validate successful configuration of the TX-ready pin, the port configuration should be polled and the settings of TX-ready feature verified (will be set to disabled/all zero if settings invalid).

The threshold should not be set above 2 kB, as the internal message buffer limit can be reached before this, resulting in the TX-ready pin never being set as messages are discarded before the threshold is reached.

7.2 Extended TX timeout

If the host does not communicate over SPI or DDC for more than approximately 2 seconds, the device assumes that the host is no longer using this interface and no more packets are scheduled for this port. This mechanism can be changed enabling "extended TX timeouts", in which case the receiver delays idling the port until the allocated and undelivered bytes for this port reach 4 kB. This feature is especially useful when using the TX-ready feature with a message output rate of less than once per second, and polling data only when data is available, determined by the TX-ready pin becoming active.

7.3 UART Ports

One or two Universal Asynchronous Receiver/Transmitter (UART) ports are featured, that can be used to transmit GNSS measurements, monitor status information and configure the receiver. See our online product descriptions for availability.

The serial ports consist of an RX and a TX line. Neither handshaking signals nor hardware flow control signals are available. These serial ports operate in asynchronous mode. The baud rates can be configured individually for each serial port. However, there is no support for setting different baud rates for reception and transmission or for different protocols on the same port.

Possible UART Interface Configurations

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>Data Bits</th>
<th>Parity</th>
<th>Stop Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4800</td>
<td>8</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>9600</td>
<td>8</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>19200</td>
<td>8</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>38400</td>
<td>8</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>57600</td>
<td>8</td>
<td>none</td>
<td>1</td>
</tr>
<tr>
<td>115200</td>
<td>8</td>
<td>none</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that for protocols such as NMEA or UBX, it does not make sense to change the default word length values (data bits) since these properties are defined by the protocol and not by the electrical interface.

If the amount of data configured is too much for a certain port's bandwidth (e.g. all UBX messages output on a UART port with a baud rate of 9600), the buffer will fill up. Once the buffer space is exceeded, new messages to be sent will be dropped. To prevent message losses, the baudrate and communication speed or the number of enabled messages should be selected so that the expected number of bytes can be transmitted in less than one second.

See CFG-PRT for UART for a description of the contents of the UART port configuration message.

7.4 USB Port

One Universal Serial Bus (USB) port is featured. See the Data Sheet of your specific product for availability. This port can be used for communication purposes and to power the positioning chip or module.

The USB interface supports two different power modes:

- In **Self Powered Mode** the receiver is powered by its own power supply. VDDUSB is used to detect the
availability of the USB port, i.e. whether the receiver is connected to a USB host.

- In **Bus Powered Mode** the device is powered by the USB bus, therefore no additional power supply is needed. See the table below for the default maximum current that can be drawn by the receiver. See [CFG-USB](#) for a description on how to change this maximum. Configuring Bus Powered Mode indicates that the device will enter a low power state with disabled GNSS functionality when the host suspends the device, e.g. when the host is put into stand-by mode.

Maximum Current in Bus Powered Mode

<table>
<thead>
<tr>
<th>Generation</th>
<th>Max Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>u-blox 6 GPS/GLONASS/QZSS</td>
<td>100 mA</td>
</tr>
</tbody>
</table>

> The voltage range for **VDDUSB** is specified from 3.0V to 3.6V, which differs slightly from the specification for **VCC**

7.5 DDC Port

A Display Data Channel ([DDC](#)) bus is implemented, which is a 2-wire communication interface compatible with the **I²C** standard ([Inter-Integrated Circuit](#)). See our online product selector matrix for availability.

Unlike all other interfaces, the DDC is not able to communicate in full-duplex mode, i.e. TX and RX are mutually exclusive. u-blox receivers act as a slave in the communication setup, therefore they cannot initiate data transfers on their own. The host, which is always master, provides the data clock (SCL), and the clock frequency is therefore not configurable on the slave.

The receiver’s DDC address is set to 0x42 by default. This address can be changed by setting the mode field in [CFG-PRT](#) for DDC accordingly.

As the receiver will be run in slave mode and the physical layer lacks a handshake mechanism to inform the master about data availability, a layer has been inserted between the physical layer and the UBX and NMEA layer. The DDC implements a simple streaming interface that allows the constant polling of data, discarding everything that is not parseable. This means that the receiver returns 0xFF if no data is available. The **TX-ready** feature can be used to inform the master about data availability and can be used as a trigger for data transmission.

7.5.1 Read Access

To allow both polled access to the full message stream and quick access to the key data, the register layout depicted in Figure [DDC Register Layout](#) is provided. The data registers 0 to 252, at addresses 0x00 to 0xFC, each 1 byte in size, contain information to be defined at a later point in time. At addresses 0xFD and 0xFE, the currently available number of bytes in the message stream can be read. At address 0xFF, the message stream is located. Subsequent reads from 0xFF return the messages in the transmit buffer, byte by byte. If the number of bytes read exceeds the number of bytes indicated, the payload is padded using the value 0xFF.

> The registers 0x00 to 0xFC will be defined in a later firmware release. Do not use them, as they don’t provide any meaningful data!
7.5.1.1 Random Read Access

Random read operations allow the master to access any register in a random manner. To perform this type of read operation, first the register address to read from must be written to the receiver (see Figure DDC Random Read Access). Following the start condition from the master, the 7-bit device address and the \(RW \) bit (which is a logic low for write access) are clocked onto the bus by the master transmitter. The receiver answers with an acknowledge (logic low) to indicate that it is responsible for the given address. Next, the 8-bit address of the register to be read must be written to the bus. Following the receiver’s acknowledge, the master again triggers a start condition and writes the device address, but this time the \(RW \) bit is a logic high to initiate the read access. Now, the master can read 1 to \(N \) bytes from the receiver, generating a not-acknowledge and a stop condition after the last byte being read. After every byte being read, the internal address counter is incremented by one, saturating at 0xFF. This saturation means, that, after having read all registers coming after the initially set register address, the raw message stream can be read.
7.5.1.2 Current Address Read

The receiver contains an address counter that maintains the address of the last register accessed, internally incremented by one. Therefore, if the previous read access was to address \(n \) (where \(n \) is any legal address), the next current address read operation would access data from address \(n+1 \) (see Figure DDC Current Address Read Access). Upon receipt of the device address with the RW bit set to one, the receiver issues an acknowledge and the master can read 1 to \(N \) bytes from the receiver, generating a not-acknowledge and a stop condition after the last byte being read.

To allow direct access to streaming data, the internal address counter is initialized to 0xFF, meaning that current address reads without a preceding random read access return the raw message stream. The address counter can be set to another address at any point using a random read access.

7.5.2 Write Access

The receiver does not provide any write access except for writing UBX and NMEA messages to the receiver, such as configuration or aiding data. Therefore, the register set mentioned in section Read Access is not writable. Following the start condition from the master, the 7-bit device address and the RW bit (which is a logic low for write access) are clocked onto the bus by the master transmitter. The receiver answers with an acknowledge (logic low) to indicate that it is responsible for the given address. Now, the master can write 2 to
N bytes to the receiver, generating a stop condition after the last byte being written. The number of data bytes must be at least 2 to properly distinguish from the write access to set the address counter in random read accesses.

DDC Write Access

![DDC Write Access Diagram]

7.6 SPI Port

A Serial Peripheral Interface (SPI) bus is available with selected receivers. See our online product descriptions for availability.

SPI is a four-wire synchronous communication interface. In contrast to UART, the master provides the clock signal, which therefore doesn't need to be specified for the slave in advance. Moreover, a baud rate setting is not applicable for the slave. SPI modes 0-3 are implemented and can be configured using the field `spiMode` in `CFG-PRT for SPI` (default is SPI mode 0).

The SPI clock speed is limited depending on hardware and firmware versions!

7.6.1 Maximum SPI clock speed

<table>
<thead>
<tr>
<th>u-blox 6</th>
<th>Firmware Version</th>
<th>Max SPI speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>200 kHz</td>
<td></td>
</tr>
</tbody>
</table>

7.6.2 Read Access

As the register mode is not implemented for the SPI port, only the UBX/NMEA message stream is provided. This stream is accessed using the Back-To-Back Read and Write Access (see section Back-To-Back Read and Write Access). When no data is available to be written to the receiver, MOSI should be held logic high, i.e. all bytes written to the receiver are set to 0xFF.

To prevent the receiver from being busy parsing incoming data, the parsing process is stopped after 50 subsequent bytes containing 0xFF. The parsing process is re-enabled with the first byte not equal to 0xFF. The number of bytes to wait for deactivation (50 by default) can be adjusted using the field `mode.ffCnt` in `CFG-PRT for SPI`, which is only necessary when messages shall be sent containing a large number of subsequent 0xFF bytes.

If the receiver has no more data to send, it sets MISO to logic high, i.e. all bytes transmitted decode to 0xFF. An efficient parser in the host will ignore all 0xFF bytes which are not part of a message and will resume data processing as soon as the first byte not equal to 0xFF is received.
7.6.3 Back-To-Back Read and Write Access

The receiver does not provide any write access except for writing UBX and NMEA messages to the receiver, such as configuration or aiding data. For every byte written to the receiver, a byte will simultaneously be read from the receiver. While the master writes to MOSI, at the same time it needs to read from MISO, as any pending data will be output by the receiver with this access. The data on MISO represents the results from a current address read, returning 0xFF when no more data is available.

SPI Back-To-Back Read/Write Access

7.7 How to change between protocols

Reconfiguring a port from one protocol to another is a two-step process:

- Step 1: the preferred protocol(s) needs to be enabled on a port using CFG-PRT. One port can handle several protocols at the same time (e.g. NMEA and UBX). By default, all ports are configured for UBX and NMEA protocol so in most cases, it’s not necessary to change the port settings at all. Port settings can be viewed and changed using the CFG-PRT messages.
- Step 2: activate certain messages on each port using CFG-MSG.

8 Receiver Configuration

8.1 Configuration Concept

u-blox positioning technology is fully configurable with UBX protocol configuration messages (message class UBX-CFG). The configuration used by the GNSS receiver during normal operation is termed "Current Configuration". The Current Configuration can be changed during normal operation by sending any UBX-CFG-XXX message to the receiver over an I/O port. The receiver will change its Current Configuration immediately after receiving the configuration message. The GNSS receiver always uses only the Current Configuration.

Unless the Current Configuration is made permanent by using UBX-CFG-CFG as described below, the Current Configuration will be lost in case of:

- a power cycle
- a hardware reset
- a (complete) controlled software reset

See the section on resetting a receiver for details.

The Current Configuration can be made permanent (stored in a non-volatile memory) by saving it to the "Permanent Configuration". This is done by sending a UBX-CFG-CFG message with an appropriate saveMask (UBX-CFG-CFG/save).
The Permanent Configuration is copied to the Current Configuration after start-up or when a `UBX-CFG-CFG` message with an appropriate `loadMask` (UBX-CFG-CFG/load) is sent to the receiver.

The Permanent Configuration can be restored to the receiver’s Default Configuration by sending a `UBX-CFG-CFG` message with an appropriate `clearMask` (UBX-CFG-CFG/clear) to the receiver. This only replaces the Permanent Configuration, not the Current Configuration. To make the receiver operate with the Default Configuration which was restored to the Permanent Configuration, a UBX-CFG-CFG/load command must be sent or the receiver must be reset.

The mentioned masks (saveMask, loadMask, clearMask) are 4-byte bitfields. Every bit represents one configuration sub-section. These sub-sections are defined in section "Organization of the Configuration Sections". All three masks are part of every UBX-CFG-CFG message. Save, load and clear commands can be combined in the same message. Order of execution is: clear, save, load.

The following diagram illustrates the process:

8.2 Organization of the Configuration Sections

The configuration is divided into several sub-sections. Each of these sub-sections corresponds to one or several UBX-CFG-XXX messages. The sub-section numbers in the following tables correspond to the bit position in the masks mentioned above. All values not listed are reserved.

Configuration sub-sections

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>CFG messages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PRT</td>
<td>UBX-CFG-PRT</td>
<td>Port and USB settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-USB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MSG</td>
<td>UBX-CFG-MSG</td>
<td>Message settings (enable/disable, update rate)</td>
</tr>
<tr>
<td>2</td>
<td>INF</td>
<td>UBX-CFG-INF</td>
<td>Information output settings (Errors, Warnings, Notice, Test etc.)</td>
</tr>
<tr>
<td>3</td>
<td>NAV</td>
<td>UBX-CFG-NAV5</td>
<td>Navigation Parameter, Receiver Datum, Measurement and Navigation Rate setting, SBAS settings, NMEA protocol settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-NAVX5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-DAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-RATE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-SBAS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-NMEA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RXM</td>
<td>UBX-CFG-GNSS</td>
<td>GNSS Settings, Power Mode Settings, Time Pulse Settings, Jamming/Interference Monitor Settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-TP5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-RXM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-PM2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UBX-CFG-ITFM</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RINV</td>
<td>UBX-CFG-RINV</td>
<td>Remote Inventory configuration</td>
</tr>
</tbody>
</table>
8.3 Permanent Configuration Storage Media

The Current Configuration is stored in the receiver’s volatile RAM. Hence, any changes made to the Current Configuration without saving will be lost if any of the reset events listed in the section above occur. By using UBX-CFG-CFG/save, the selected configuration sub-sections are saved to all non-volatile memories available:

- **On-chip BBR** (battery backed RAM). In order for the BBR to work, a backup battery must be applied to the receiver.
- **External flash memory**, where available.

8.4 Receiver Default Configuration

The Permanent Configuration can be reset to Default Configuration through a UBX-CFG-CFG/clear message. The receiver’s Default Configuration is normally determined when the receiver is manufactured. Refer to specific product data sheet for further details.

9 Forcing a Receiver Reset

Typically, in GNSS receivers, one distinguishes between Cold, Warm, and Hot starts, depending on the type of valid information the receiver has at the time of the restart.

- **Cold start** In this mode, the receiver has **no** information from the last position (e.g. time, velocity, frequency etc.) at startup. Therefore, the receiver must search the full time and frequency space, and all possible satellite numbers. If a satellite signal is found, it is tracked to decode the ephemeris (18-36 seconds under strong signal conditions), whereas the other channels continue to search satellites. Once there is a sufficient number of satellites with valid ephemeris, the receiver can calculate position and velocity data. Please note that some competitors call this startup mode **Factory Startup**.

- **Warm start** In Warm start mode, the receiver has approximate information for time, position, and coarse satellite position data (Almanac). In this mode, after power-up, the receiver normally needs to download ephemeris before it can calculate position and velocity data. As the ephemeris data usually is outdated after 4 hours, the receiver will typically start with a Warm start if it has been powered down for more than 4 hours. In this scenario, several augmentations exist. See the section on **Aiding and Acquisition**.

- **Hot start** In Hot start, the receiver was powered down only for a short time (4 hours or less), so that its ephemeris is still valid. Since the receiver doesn’t need to download ephemeris again, this is the fastest startup method.

In the **UBX-CFG-RST** message, one can force the receiver to reset and clear data, in order to see the effects of maintaining/losing such data between restarts. For this, the CFG-RST message offers the navBbrMask field, where Hot, Warm and Cold starts can be initiated, and also other combinations thereof.

Data stored in flash memory is not cleared by any of the options provided by UBX-CFG-RST. So, for example, if valid AlmanacPlus data stored in the flash it is likely to have an impact on a “Cold start”.

The Reset Type can also be specified. This is not related to GNSS, but to the way the software restarts the system.

- **Hardware Reset** uses the on-chip Watchdog, in order to electrically reset the chip. This is an immediate, asynchronous reset. No Stop events are generated. This is equivalent to pulling the Reset signal on the receiver.

- **Controlled Software Reset** terminates all running processes in an orderly manner and, once the system is...
idle, restarts operation, reloads its configuration and starts to acquire and track GNSS satellites.

- **Controlled Software Reset (GNSS only)** only restarts the GNSS tasks, without reinitializing the full system or reloading any stored configuration.
- **Controlled GNSS Stop** stops all GNSS tasks. The receiver will not be restarted, but will stop any GNSS related processing.
- **Controlled GNSS Start** starts all GNSS tasks.

10 Remote Inventory

10.1 Description

The Remote Inventory enables storing user-defined data in the non-volatile memory of the receiver. The data can be either binary or a string of ASCII characters. In the second case, it is possible to dump the data at startup.

10.2 Usage

- The contents of the Remote Inventory can be set and polled with the message UBX-CFG-RINV. Refer to the message specification for a detailed description.
- If the contents of the Remote Inventory are polled without having been set before, the default configuration (see table below) is output.

Default configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags</td>
<td>0x00</td>
</tr>
<tr>
<td>data</td>
<td>"Notice: no data saved!"</td>
</tr>
</tbody>
</table>

As with all configuration changes, these must be saved in order to be made permanent. Make sure to save the section RINV before resetting or switching off the receiver. More information about saving a configuration section can be found in chapter Configuration Concept.

11 Power Management

u-blox receivers support different power modes. These modes represent strategies of how to control the acquisition and tracking engines in order to achieve either the best possible performance or good performance with reduced power consumption.

Power modes are selected using the message CFG-RXM and configured using UBX-CFG-PM2.

11.1 Continuous Mode

During a Cold start, a receiver in Continuous Mode continuously deploys the acquisition engine to search for all satellites. Once a position can be calculated and a sufficient number of satellites are being tracked, the acquisition engine is powered off resulting in significant power savings. The tracking engine continuously tracks acquired satellites and acquires other available or emerging satellites. Whenever the receiver can not calculate a position anymore or the number of satellites tracked is below the sufficient number, the acquisition engine is powered on again to guarantee a quick reacquisition.

Note that even if the acquisition engine is powered off, satellites continue to be acquired.
11.2 Power Save Mode

Power Save Mode (PSM) allows a reduction in system power consumption by selectively switching parts of the receiver on and off.

Note: Power Save Mode cannot be selected when the receiver is configured to process GLONASS signals.

11.2.1 Operation

Power Save Mode has two modes of operation: cyclic tracking operation and ON/OFF operation. Cyclic tracking operation is used when position fixes are required in short periods of 1 to 10s. ON/OFF operation on the other hand is used for periods longer than 10s. Periods in ON/OFF operation can be in the order of minutes, hours or days. The mode of operation can be configured and depending on the setting, the receiver demonstrates different behavior: In ON/OFF operation the receiver switches between phases of startup/navigation and phases with low or almost no system activity. In cyclic tracking the receiver does not shut down completely between fixes, but uses low power tracking instead.

PSM is based on a state machine with five different states: *Inactive for update* and *Inactive for search* states, *Acquisition* state, *Tracking* state and *Power Optimized Tracking (POT)* state.

- *Inactive* states: Most parts of the receiver are switched off.
- *Acquisition* state: The receiver actively searches for and acquires signals. Maximum power consumption.
- *Tracking* state: The receiver continuously tracks and downloads data. Less power consumption than in *Acquisition* state.
- *POT* state: The receiver repeatedly loops through a sequence of tracking (TRK), calculating the position fix (Calc), and entering an idle period (Idle). No new signals are acquired and no data is downloaded. Much less power consumption than in *Tracking* state.

The following figure illustrates the state machine:
11.2.1.1 ON/OFF operation - long update period

When the receiver is switched on, it first enters Acquisition state. If it is able to obtain a valid position fix within the time given by the acquisition timeout, it switches to Tracking state. Otherwise it enters Inactive for search state and re-starts after the configured search period (minus a startup margin). As soon as the receiver gets a valid position fix (one passing the navigation output filters), it enters Tracking state. Upon entering Tracking state, the on time is started. Once the on time is over Inactive for update state is entered and the receiver re-starts according to the configured update grid (see chapter Grid offset for an explanation). If the signal is lost while in Tracking state, Acquisition state is entered. If the signal is not found within the acquisition timeout, the receiver enters Inactive for search state. Otherwise the receiver will re-enter Tracking state and stay there until the newly started on time is over.

The diagram below illustrates how ON/OFF operation works:
11.2.1.2 Cyclic tracking operation - short update period

When the receiver is switched on, it first enters **Acquisition** state. If it is able to obtain a position fix within the time given by the acquisition timeout, it switches to **Tracking** state. Otherwise, it will enter **Inactive for search** state and re-start within the configured search grid. After a valid position fix, **Tracking** state is entered and the on time is started. In other words the on time is started with the first valid position fix. Once the on time is over, **POT** state is entered. In **POT** state the receiver continues to output position fixes according to the update period. To have maximum power savings, set the on time to zero. This causes the receiver to enter **POT** state as soon as possible. If the signal becomes weak or is lost during **POT** state, **Tracking** state is entered. Once the signal is good again and the newly started on time is over, the receiver will re-enter **POT** state. If the receiver can’t get a position fix in the **Tracking** state, it enters **Acquisition** state. Should the acquisition fail as well, **Inactive for search** state is entered.

The diagram below illustrates how cyclic tracking operation works:

Diagram of cyclic tracking operation

11.2.1.3 User controlled operation - update and search period of zero

Setting the update period to zero causes the receiver to wait in the **Inactive for update** state until woken up by the user. Setting the search period to zero causes the receiver to wait in the **Inactive for search** state indefinitely after an unsuccessful start-up. Any wake-up event will re-start the receiver. See chapter **Wake-up** for more information on wake-up events.

External wake-up is required when setting update or search period to zero!

11.2.1.4 Satellite data download

The receiver is not able to download satellite data (e.g. the ephemeris) while it is working in ON/OFF or cyclic tracking operation. Therefore it has to temporarily switch to continuous operation for the time the satellites transmit the desired data. To save power the receiver schedules the downloads according to an internal timetable and only switches to continuous operation while data of interest is being transmitted by the SVs. Each SV transmits its own ephemeris data. Ephemeris data download is feasible when the corresponding SV...
has been tracked with a minimal C/No over a certain period of time. The download is scheduled in a 30 minute
grid or immediately when fewer than a certain number of visible SVs have valid ephemeris data.
Almanac, ionosphere, UTC correction and SV health data are transmitted by all SVs simultaneously. Therefore
these parameters can be downloaded when a single SV is tracked with a high enough C/No.

11.2.2 Configuration
Power Save Mode is enabled and disabled with the UBX-CFG-RXM message and configured with the
UBX-CFG-PM2 message.

\textbf{When enabling Power Save Mode, SBAS support can be disabled (UBX-CFG-SBAS) since the
receiver will be unable to download any SBAS data in this mode.}

A number of parameters can be used to customize PSM to your specific needs. These parameters are listed in
the following table:

\textbf{Power Save Mode configuration options}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of operation</td>
<td>Receiver mode of operation</td>
</tr>
<tr>
<td>Update period</td>
<td>Time between two position fix attempts</td>
</tr>
<tr>
<td>Search period</td>
<td>Time between two acquisition attempts if the receiver is unable to get a position fix</td>
</tr>
<tr>
<td>Acquisition timeout</td>
<td>Time after which the receiver stops acquisition and enters \textit{Inactive for search} state</td>
</tr>
<tr>
<td>On-time</td>
<td>Time the receiver remains in \textit{Tracking} state and produces position fixes</td>
</tr>
<tr>
<td>Wait for timefix</td>
<td>Wait for time fix before entering \textit{Tracking} state</td>
</tr>
<tr>
<td>Do not enter \textit{Inactive for search} state</td>
<td>Receiver does not enter \textit{Inactive for search} state if it can’t get a position fix but keeps trying instead</td>
</tr>
<tr>
<td>Update RTC</td>
<td>Enables periodic Real Time Clock (RTC) update</td>
</tr>
<tr>
<td>Update Ephemeris</td>
<td>Enables periodic ephemeris update</td>
</tr>
<tr>
<td>EXTINT selection</td>
<td>Selects EXTINT pin used with pin control feature</td>
</tr>
<tr>
<td>EXTINT ‘high’ keeps awake</td>
<td>Enables force-ON pin control feature</td>
</tr>
<tr>
<td>EXTINT ‘low’ forces sleep</td>
<td>Enables force-OFF pin control feature</td>
</tr>
<tr>
<td>Grid offset</td>
<td>Time offset of update grid with respect to GPS start of week</td>
</tr>
</tbody>
</table>

11.2.2.1 Mode of operation
The mode of operation to use mainly depends on the update period: For short update periods (in the range of
a few seconds), cyclic tracking should be configured. On the other hand, for long update periods (in the range
of minutes or longer) only work with ON/OFF operation.

See chapter ON/OFF operation - long update period and Cyclic tracking operation - short update period for
more information on the two modes of operation.

11.2.2.2 Update and search period
The update period specifies the time between successive position fixes. If no position fix can be obtained within
the acquisition timeout, the receiver will retry after the time specified by the search period. Update and search
period are fixed with respect to an absolute time grid based on GPS time. They do not refer to the time of the
last valid position fix or last position fix attempt.

\textbf{New settings are ignored if the update period or the search period exceeds the maximum number
of milliseconds in a week. In that case the previously stored values remain effective.}
11.2.2.3 Acquisition timeout
The receiver tries to obtain a position fix within the time given in the acquisition timeout. This setting is treated as a minimum value. If the receiver determines that it needs more time for the given starting conditions, it will automatically prolong this time. If set to zero, the acquisition timeout is exclusively determined by the receiver. In case of a very weak or no GPS signal, the timeout determined by the receiver may be shortened in order to save power. However, the acquisition timeout will never be shorter than the configured value.

11.2.2.4 On time and wait for timefix
The on time specifies how long the receiver stays in Tracking state before switching to POT and Inactive for update state respectively. The quality of the position fixes can be configured by setting the masks in the message UBX-CFG-NAV5. If the wait for timefix option is enabled the transition from Acquisition to Tracking state is made only if the GPS time is known and within the configured limits, and the receiver is continuously producing position fixes for more than two seconds. Thus enabling the wait for timefix option usually delays the transition from Acquisition to Tracking state by a few seconds. Keep in mind that setting harder limits in UBX-CFG-NAV5 will prolong start-up time so you might want to increase the acquisition timeout.

11.2.2.5 Do not enter ‘inactive for search’ state when no fix
If this option is enabled, the receiver acts differently in case it can’t get a fix: instead of entering Inactive for search state, it keeps trying to acquire a fix. In other words, the receiver will never be in Inactive for search state and therefore the search period and the acquisition timeout are obsolete.

11.2.2.6 Update RTC and Ephemeris
To maintain the ability of a fast start-up, the receiver needs to calibrate its RTC and update its ephemeris data on a regular basis. This can be ensured by activating the update RTC and update Ephemeris option. The RTC is calibrated every 5 minutes and the ephemeris data is updated approximately every 30 minutes. See chapter Satellite data download for more information.

11.2.2.7 EXTINT pin control
The pin control feature allows overriding the automatic active/inactive cycle of Power Save Mode. The state of the receiver can be controlled through either the EXTINT0 or the EXTINT1 pin.
If the Force-ON feature is enabled, the receiver will not enter the Inactive states as long as the configured EXTINT pin (either EXTINT0 or EXTINT1) is at a ‘high’ level. The receiver will therefore always be in Acquisition/Tracking states (ON/OFF operation) and Acquisition/Tracking/POT states (cyclic tracking operation) respectively. When the pin level changes to ‘low’ the receiver continues with its configured behavior. UBX-CFG-PM2 is used to select and configure the pin that will control the behavior as described above.
If the Force-OFF feature is enabled, the receiver will enter Inactive state and remain there until the next wake-up event. Any wake-up event can wake up the receiver, even while the EXTINT pin is set to Force-OFF. However, the receiver will only wake up for the time period needed to read the configuration pin settings, i.e. Force-OFF, and will then enter Inactive state again.

11.2.2.8 Grid offset
Once the receiver has a valid time, the update grid is aligned to the start of the GPS week (Sunday at 00:00 o’clock). Before having a valid time, the update grid is unaligned. A grid offset now shifts the update grid with respect to the start of the GPS week. An example of usage can be found in chapter Use grid offset.

The grid offset is not used in cyclic tracking operation.
11.2.3 Features

11.2.3.1 Communication
When PSM is enabled, communication with the receiver (e.g. UBX message to disable PSM) requires particular attention. This is because the receiver may be in Inactive state and therefore unable to receive any message through its interfaces. To ensure that the configuration messages are processed by the receiver, even while in Inactive state, the following steps need to be taken:

- Send a dummy sequence of 0xFF (one byte is sufficient) to the receiver’s UART interface. This will wake the receiver up in case it is in Inactive state. If the receiver is not in Inactive state, the sequence will be ignored.
- Send the configuration message about half a second after the dummy sequence. If the interval between the dummy sequence and the configuration message is too short, the receiver may not yet be ready. On the other hand, if the interval is too long, the receiver may return to Inactive state before the configuration message was received. It is therefore important to check for a UBX-ACK-ACK reply from the receiver to confirm that the configuration message was received.
- Send the configuration save message immediately after the configuration message.

11.2.3.2 Wake-up
The receiver can be woken up by generating an edge on one of the following pins:

- rising or falling edge on one of the EXTINT pins
- rising or falling edge on the RXD1 pin
- rising edge on NRESET pin

All wake-up signals are interpreted as a position request, where the receiver wakes up and tries to obtain a position fix. Wake-up signals have no effect if the receiver is already in Acquisition, Tracking or POT state.

11.2.3.3 Behavior while USB host connected
As long as the receiver is connected to a USB host, it will not enter the lowest possible power state. This is because it must retain a small level of CPU activity to avoid breaching requirements of the USB specification. The drawback, however, is that power consumption is higher.

Wake-up by pin/UART is possible even if the receiver is connected to a USB host. The state of the pin must be changed for at least one millisecond.

11.2.3.4 Cooperation with the AssistNow Autonomous feature
If both PSM and AssistNow Autonomous features are enabled, the receiver won’t enter Inactive for update state as long as AssistNow Autonomous carries out calculations. This prevents losing data from unfinished calculations and, in the end, reduces the total extra power needed for AssistNow Autonomous. The delay before entering Inactive for update state, if any, will be in the range of several seconds, rarely more than 20 seconds.

Only entering Inactive for update state is affected by AssistNow Autonomous. In other words: in cyclic tracking operation, AssistNow Autonomous will not interfere with the PSM (apart from the increased power consumption).

Enabling the AssistNow Autonomous feature will lead to increased power consumption while prediction is calculated. The main goal of PSM is to reduce the overall power consumption. Therefore for each application special care must be taken to judge whether AssistNow Autonomous is beneficial to the overall power consumption or not.
11.2.4 Examples

11.2.4.1 Use Grid Offset
Scenario: Get a position fix once a day at a fixed time. If the position fix cannot be obtained try again every two hours.

Solution: First set the update period to 24*3600s and the search period to 2*3600s. Now a position fix is obtained every 24 hours and if the position fix fails retrials are scheduled in two hour intervals. As the update grid is aligned to midnight Saturday/Sunday, the position fixes happen at midnight. By setting the grid offset to 12*3600s the position fixes are shifted to once a day at noon. If the position fix at noon fails, retrials take place every two hours, the first at 14:00. Upon successfully acquiring a position fix the next fix attempt is scheduled for noon the following day.

11.2.4.2 Use update periods of zero
Scenario: Get a position fix on request.

Solution: Set update and search period to zero. This way the receiver stays inactive until it is woken up.

11.3 Peak current settings
The peak current during acquisition can be reduced by activating the corresponding option in CFG-PM2. A peak current reduction will result in longer start-up times of the receiver.

This setting is independent of the activated mode (Continuous or Power Save Mode).

11.4 Power On/Off command
With message RXM-PMREQ the receiver can be forced to enter Inactive state (in Continuous and Power Save Mode). It will stay in Inactive state for the time specified in the message or until it is woken up by an EXTINT or activity on the RXD1 line.

Sending the message RXM-PMREQ while the receiver is in Power Save Mode will overrule PSM and force the receiver to enter Inactive state. It will stay in Inactive state until woken up. After wake-up the receiver continues working in Power Save Mode as configured.

11.5 EXTINT pin control when Power Save Mode is not active
The receiver can be forced OFF also when Power Save Mode is not active. This works the same way as EXTINT pin control in Power Save Mode. Just as in Power Save Mode, this feature has to be enabled and configured using CFG-PM2.

12 Time pulse

There is only limited support for the generation of time pulses when running in GLONASS mode. In particular the accuracy of the time pulse in GLONASS mode has not been calibrated.

12.1 Introduction
u-blox GNSS receivers include a time pulse function providing clock pulses with configurable duration and frequency. The time pulse function can be configured using the CFG-TP5 message. The TIM-TP message provides time information for the next pulse, time source and the quantization error of the output pin.
12.2 Recommendations

- For best time pulse performance it is recommended to disable the SBAS subsystem.
- When using time pulse for precision timing applications it is recommended to calibrate the RF signal delay against a reference-timing source.
- Care needs to be given to the cable delay settings in the receiver configuration.
- In order to get the best timing accuracy with the antenna, a fixed and accurate position is needed.
- If relative time accuracy between multiple receivers is required, do not mix receivers of different product families. If this is required, the receivers must be calibrated by accordingly setting cable delay and user delay.
- The recommended configuration when using the TIM-TP message is to set both the measurement rate (CFG-RATE) and the time pulse frequency (CFG-TP5) to 1Hz.

Since the rate of TIM-TP is bound to the measurement rate, more than one TIM-TP message can appear between two pulses if the measurement rate is set larger than the time pulse frequency. In this case all TIM-TP messages in between a time pulse T1 and T2 belong to T2 and the last TIM-TP before T2 reports the most accurate quantization error. In general, if the navigation solution rate and time pulse rate are configured to different values, there will not be a single TIM-TP message for each time pulse.

The sequential order of the signal present at the TIMEPULSE pin and the respective output message for the simple case of 1 pulse per second (1PPS) and a one second navigation update rate is shown in the following figure.
12.3 Time pulse configuration

u-blox GNSS receivers provide one or two TIMEPULSE pins (dependant on product variant) delivering a time pulse (TP) signal with a configurable pulse period, pulse length and polarity (rising or falling edge). Check the product data sheet for detailed specification of configurable values.

It is possible to define different signal behavior (i.e. output frequency and pulse length) depending on whether or not the receiver is locked to GPS time. Time pulse signals can be configured using the UBX proprietary message **CFG-TP5**.

12.4 Configuring time pulse with UBX-CFG-TP5

The UBX message **CFG-TP5** can be used to change the time pulse settings, and includes the following parameters defining the pulse:

- **time pulse index** - Index of time pulse.
- **antenna cable delay** - Signal delay due to the cable between antenna and receiver.
- **RF group delay** - Signal delay in the RF module of the receiver (read-only).
- **pulse frequency/period** - Frequency or period time of the pulse.
- **pulse frequency/period lock** - Frequency or period time of the pulse, as soon as receiver has calculated a valid time from a received signal. Only used if the according flag is set to use another setting in locked mode.
- **pulse length/ratio** - Length or duty cycle of the generated pulse, either specifies a time or ratio for the pulse to be on/off.
- **pulse length/ratio lock** - Length or duty cycle of the generated pulse, as soon as receiver has calculated a valid time from a received signal. Only used if the according flag is set to use another setting in locked mode.
- **user delay** - The cable delay from the receiver to the user device plus signal delay of any user application.
- **active** - time pulse will be active if this bit is set.
- **lock to gps freq** - Use frequency gained from GPS signal information rather than local oscillator’s frequency if flag is set.
- **locked other setting** - If this bit is set, as soon as the receiver can calculate a valid time, the alternative setting is used. This mode can be used for example to disable time pulse if time is not locked, or indicate lock with different duty cycles.
- **is frequency** - Interpret the ‘Frequency/Period’ field as frequency rather than period if flag is set.
- **is length** - Interpret the ‘Length/Ratio’ field as length rather than ratio if flag is set.
- **align to TOW** - If this bit is set, pulses are aligned to the top of a second.
- **polarity** - If set, the first edge of the pulse is a rising edge (Pulse Mode: Rising).
• **grid UTC/GPS** - Selection between UTC (0) or GPS (1) timegrid. Also effects the time output by **TIM-TP** message.

![The maximum pulse length can’t exceed the pulse period.](image)

![time pulse settings shall be chosen in such a way, that neither the high nor the low period of the output is less than 50 ns (except when disabling it completely), otherwise pulses can be lost.](image)

12.4.1 Example 1:
The example below shows the 1PPS TP signal generated on the time pulse output according to the specific parameters of the **CFG-TP5** message. The 1 Hz output is maintained whether or not the receiver is locked to GPS time. The alignment to TOW can only be maintained when GPS time is locked.

![Diagram](image)
12.4.2 Example 2:
The following example shows a 10 MHz TP signal generated on the TIMEPULSE2 output when the receiver is locked to GPS time. Without the lock to GPS time no frequency is output.

![Diagram of TIMEPULSE2 output](image)
13 Receiver Status Monitoring

Messages in the UBX class MON are used to report the status of the parts of the embedded computer system that are not GNSS-specific.

The main purposes are:

- **Hardware and Software Versions**, using MON-VER
- **Status of the Communications Input/Output system**
- **Status of various Hardware Sections with MON-HW**

13.1 Input/Output system

The I/O system is a GNSS-internal layer where all data input- and output capabilities (such as UART, DDC, SPI, USB) of the GNSS receiver are combined. Each communications task has buffers assigned, where data is queued. For data originating at the receiver, to be communicated over one or multiple communications queues, the message MON-TXBUF can be used. This message shows the current and maximum buffer usage,
as well as error conditions.

If the amount of data configured is too much for a certain port’s bandwidth (e.g. all UBX messages output on a UART port with a baud rate of 9600), the buffer will fill up. Once the buffer space is exceeded, new messages to be sent will be dropped. For details see section Serial Communication Ports Description.

Inbound data to the GNSS receiver is placed in buffers. Usage of these buffers is shown with the message `MON-RXBUF`. Further, as data is then decoded within the receiver (e.g. to separate UBX and NMEA data), the `MON-MSGPP` can be used. This message shows (for each port and protocol) how many messages were successfully received. It also shows (for each port) how many bytes were discarded because they were not in any of the supported protocol framings.

The following table shows the port numbers used. Note that any numbers not listed are reserved for future use.

Port Number assignment

<table>
<thead>
<tr>
<th>Port #</th>
<th>Electrical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DDC (I²C compatible)</td>
</tr>
<tr>
<td>1</td>
<td>UART 1</td>
</tr>
<tr>
<td>2</td>
<td>UART 2</td>
</tr>
<tr>
<td>3</td>
<td>USB</td>
</tr>
<tr>
<td>4</td>
<td>SPI</td>
</tr>
</tbody>
</table>

Protocol numbers range from 0-7. All numbers not listed are reserved.

Protocol Number assignment

<table>
<thead>
<tr>
<th>Protocol #</th>
<th>Protocol Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UBX Protocol</td>
</tr>
<tr>
<td>1</td>
<td>NMEA Protocol</td>
</tr>
<tr>
<td>2</td>
<td>RTCM Protocol</td>
</tr>
</tbody>
</table>

13.2 Jamming/Interference Indicator

The field `jamInd` of the `UBX-MON-HW` message can be used as an indicator for continuous wave (narrowband) jammers/interference only. The interpretation of the value depends on the application. It is necessary to run the receiver in the application and then calibrate the ‘not jammed’ case. If the value rises significantly above this threshold, this indicates that a continuous wave jammer is present.

This indicator is always enabled.

13.3 Jamming/Interference Monitor (ITFM)

The field `jammingState` of the `MON-HW` message can be used as an indicator for both broadband and continuous wave (CW) jammers/interference. It is independent of the (CW only) jamming indicator described in Jamming/Interference Indicator above.

This monitor reports whether jamming has been detected or suspected by the receiver. The receiver monitors the background noise and looks for significant changes. Normally, with no interference detected, it will report ‘OK’. If the receiver detects that the noise has risen above a preset threshold, the receiver reports ‘Warning’. If in addition, there is no current valid fix, the receiver reports ‘Critical’.

The monitor has four states as shown in the following table:

Jamming/Interference monitor reported states

<table>
<thead>
<tr>
<th>Value</th>
<th>Reported state</th>
<th>Description</th>
</tr>
</thead>
</table>
Jamming/Interference monitor reported states continued

<table>
<thead>
<tr>
<th>Value</th>
<th>Reported state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unknown</td>
<td>Jamming/interference monitor not enabled, uninitialized or antenna disconnected</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
<td>no interference detected</td>
</tr>
<tr>
<td>2</td>
<td>Warning</td>
<td>position ok but interference is visible (above the thresholds)</td>
</tr>
<tr>
<td>3</td>
<td>Critical</td>
<td>no reliable position fix and interference is visible (above the thresholds); interference is probable reason why there is no fix</td>
</tr>
</tbody>
</table>

The monitor is disabled by default. The monitor is enabled by sending an appropriate `UBX-CFG-ITFM` message with the `enable` bit set. In this message it is also possible to specify the thresholds at which broadband and CW jamming are reported. These thresholds should be interpreted as the dB level above ‘normal’. It is also possible to specify whether the receiver expects an active or passive antenna.

> The monitor algorithm relies on comparing the currently measured spectrum with a reference from when a good fix was obtained. Thus the monitor will only function when the receiver has had at least one (good) first fix, and will report ‘Unknown’ before this time.

> Jamming/Interference monitor is not supported in Power Save Mode (PSM) ON/OFF mode.

14 Timemark

The receiver can be used to provide an accurate measurement of the time at which a pulse was detected on the external interrupt pin. The reference time can be chosen by setting the time source parameter to GPS, UTC or local time in the `UBX-CFG-TP5` configuration message (using flags `LockGpsFreq` and `gridUtcGps`). The delay figures defined with `UBX-CFG-TP5` are also applied to the results output in the `UBX-TIM-TM2` message.

A `UBX-TIM-TM2` message is output at the next epoch if

- the `UBX-TIM-TM2` message is enabled
- a rising or falling edge was triggered since last epoch on one of the EXTINT channels

The `UBX-TIM-TM2` messages include time of the last timemark, new rising/falling edge indicator, time source, validity, number of marks and a quantization error. The timemark is triggered continuously.

> Only the last rising and falling edge detected between two epochs is reported since the output rate of the `UBX-TIM-TM2` message corresponds to the measurement rate configured with `UBX-CFG-RATE` (see Figure below).
15 Aiding and Acquisition

15.1 Introduction
The UBX-AID message class provides the means for providing assistance data to u-blox GNSS receivers, including AssistNow Online and AssistNow Offline.

There is currently limited support for aiding of any system other than GPS. Consequently most of this section only applies to GPS operation.

15.2 Startup Strategies

- **Cold start:** In this startup mode, the receiver has no information about last position, time, velocity, frequency etc. Therefore, the receiver has to search the full time- and frequency space, and also all possible satellite numbers. If a satellite signal is found, it is being tracked to decode ephemeris (18-36 seconds under strong signal conditions), whereas the other channels continue to search satellites. Once there are sufficient number of satellites with valid ephemeris, the receiver can calculate position- and velocity data. Note that some competitors call this startup mode Factory Startup.

- **Warm start:** In Warm start mode, the receiver has approximate information of time, position, and coarse data on Satellite positions (Almanac). In this mode, after power-up, the receiver basically needs to download ephemeris until it can calculate position- and velocity data. As the ephemeris data usually is outdated after 4 hours, the receiver will typically start with a warmstart if it was powered down for more than that amount of time. For this scenario, several augmentations exist. See the sections on AssistNOW online and offline below.

- **Hot start:** In Hot start, the receiver was powered down only for a short time (4 hours or less), so that its ephemeris is still valid. Since the receiver doesn’t need to download ephemeris again, this is the fastest startup method. In the UBX-CFG-RST message, one can force the receiver to reset and clear data, in order to see the effects of maintaining/losing such data between restarts. For that, the UBX-CFG-RST message
offers the navBbrMaskfield, where Hot, Warm and Cold starts can be initiated, and also other combinations thereof.

15.3 Aiding / Assisted GPS (A-GPS)

The Challenge of Stand-alone GPS

Users expect instant position information. With standard GPS this is not always possible because at least four satellites must transmit their precise orbital position data, called ephemeris, to the GPS receiver. Under adverse signal conditions, data downloads from the satellites to the receiver can take minutes, hours or even fail altogether.

Assisted GPS (A-GPS) boosts acquisition performance by providing data such as ephemeris, almanac, accurate time and satellite status to the GPS receiver via mobile networks or the Internet. The aiding data enables the receiver to compute a position within seconds, even under poor signal conditions.

15.4 Aiding Data

The following aiding data can be submitted to the receiver:

- **Position**: Position information can be submitted to the receiver using the `UBX-AID-INI` message. Both, ECEF X/Y/Z and latitude/longitude/height formats are supported.
- **Time**: The time can either be supplied as an inexact value via the standard communication interfaces, suffering from latency depending on the baud rate, or using hardware time synchronization where an accurate time pulse is connected to an external interrupt. Both methods are supported in the `UBX-AID-INI` message.
- **Frequency**: It is possible to supply hardware frequency aiding by connecting a periodic rectangular signal with a frequency up to 500 kHz and arbitrary duty cycle (low/high phase duration must not be shorter than 50 ns) to an external interrupt, and providing the applied frequency value using the `UBX-AID-INI` message.
- **Orbit data**: Orbit data can be submitted using `UBX-AID-ALM` and `UBX-AID-EPH`.
- **Additional information**: `UBX-AID-HUI` can be used to supply health information, UTC parameters and ionospheric data to the receiver.

15.5 Aiding Sequence

A typical aiding sequence comprises the following steps:

- Power-up the GNSS receiver
- Send `UBX-AID-INI` (time, clock and position) message.
- Send `UBX-AID-EPH` (ephemeris) message.
- Apply optional hardware time synchronization pulse within 0.5 s after (or before, depending on the configuration in `UBX-AID-INI`) sending the `UBX-AID-INI` message if hardware time synchronization is required. When sending the message before applying the pulse, make sure to allow the GNSS receiver to parse and process the aiding message. The time for parsing depends on the baud rate. The processing time is 100 ms maximum.
- Send optional `UBX-AID-HUI` (health, UTC and ionosphere parameters) message.
- Send optional `UBX-AID-ALM` (almanac) message.
15.6 AssistNow Online

AssistNow Online is u-blox’ end-to-end Assisted GPS (A-GPS) solution that boosts GPS acquisition performance, bringing Time To First Fix (TTFF) down to seconds. The system works by accessing assistance data such as ephemeris, almanac and accurate time from our Global Reference Network of GNSS receivers placed around the globe. With A-GPS, the receiver can acquire satellites and provide accurate position data instantly on demand, even under poor signal conditions.

AssistNow Online makes use of User Plane communication and open standards such as TCP/IP. Therefore, it works on all standard mobile communication networks that support Internet access, including GPRS, UMTS and Wireless LAN. No special arrangements need to be made with mobile network operators to enable AssistNow Online.

In terms of the messages AssistNow Online consists of Aiding data which deliver Position and Time

UBX-AID-INI

Ephemerides **UBX-AID-EPH**, Almanac **UBX-AID-ALM** and Health/UTC/Iono information **UBX-AID-HUI**

AssistNow Online is the only form of aiding that currently supports GLONASS operation. Even so, GLONASS orbit data (ephemeris or almanac) it not currently supported.

15.7 AssistNow Offline

AssistNow Offline is an A-GPS service that boosts GPS acquisition performance, bringing Time To First Fix (TTFF) down to seconds. Unlike AssistNow Online, this solution enables instant positioning without the need for connectivity at start-up. The system works by using AlmanacPlus (ALP) differential almanac correction data to speed up acquisition, enabling a position fix within seconds. Users access the data by means of occasional Internet downloads, at the user’s convenience.
u-blox provides AlmanacPlus (ALP) data files in different sizes, which contain differential almanac corrections that are valid for a period of between 1 and 14 days thereafter. Users can download correction data anytime they have an Internet connection. The GNSS receiver stores the downloaded data in the non-volatile memory. As an alternative, a host CPU may store the file, but deliver the data in pieces when requested.

AssistNow Offline works in locations without any wireless connectivity as the correction data files reside in the receiver or the host. This makes them immediately available upon start-up, eliminating connection set-up delays, download waiting times and call charges.

The simplest set-up is for GNSS receivers including internal non-volatile memory or an external flash memory where ALP data can be stored. In this case, the \texttt{UBX-AID-ALP} message is used.

When the receiver has neither suitable internal memory nor an external flash memory, the ALP file must be stored to the host CPU. The receiver can then request data from the host when needed. This arrangement is implemented using the \texttt{UBX-AID-ALPSRV} message.

In both cases, status reporting on ALP data currently available to the receiver can be taken from message \texttt{UBX-AID-ALP (STAT)}.

AssistNow Offline data are published at \url{http://alp.u-blox.com/}.

15.7.1 Flash-based AlmanacPlus Overview

Flash-based AlmanacPlus functionality means that AlmanacPlus data is stored in the program flash memory connected to the chip.

The task of a server is simply to download the data from an Internet server or other sources, and then deliver the full file piece by piece to the GNSS receiver. This is different to the method described in \texttt{UBX-AID-ALPSRV} where the file would remain within the host and the GNSS receiver would request chunks from that file when needed.

The message AID-ALP exists in several variants, combining all functionality needed to download data and report status within one Class/Message ID.

\textit{AlmanacPlus data stored in flash memory is not affected by any reset of the receiver. The only simple ways to clear it are to completely erase the whole flash memory or to overwrite it with a new set of AlmanacPlus data.}

15.7.1.1 Download Procedure

The following steps are a typical sequence for downloading an ALP file to the receiver:

- The server downloads a copy of a current ALP file, and stores it locally
- It sends the first N bytes from that file, using the AID-ALP (TX) message.
- The server awaits a AID-ALP (ACK) or AID-ALP (NAK) message.
- If can then continue, sending the next N bytes if the message was acknowledged.
- Once all data has been transferred, or a NAK has been received, the server sends an AID-ALP (STOP) message.

Note that:
- N should not be larger than ~700 bytes (due to the input buffers on the RS232/USB lines). Smaller values of N might improve reliability.
- N must be a multiple of 2.
- There is no re-send mechanism; if a NAK message is received, the full downloading process must be restarted.
- There is no explicit checksum, but an implicit one, as the ALP file already includes a checksum to verify consistency.

Overview of the different versions of AID-ALP messages

<table>
<thead>
<tr>
<th>Short Name</th>
<th>Content</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AID-ALP (TX)</td>
<td>ALP server sends data to client</td>
<td>Server -> Client</td>
</tr>
<tr>
<td>AID-ALP (STOP)</td>
<td>ALP server terminates a transfer sequence</td>
<td>Server -> Client</td>
</tr>
<tr>
<td>AID-ALP (ACK)</td>
<td>ALP client acknowledges successful receipt of data.</td>
<td>Client -> Server</td>
</tr>
<tr>
<td>AID-ALP (NAK)</td>
<td>ALP client indicates a failed reception of data</td>
<td>Client -> Server</td>
</tr>
<tr>
<td>AID-ALP (STAT)</td>
<td>ALP client reports status of the ALP data stored in flash memory</td>
<td>Client -> Server</td>
</tr>
</tbody>
</table>

15.7.2 Host-based AlmanacPlus Overview

All three versions of AID-ALPSRV messages are used for the case where the storage of an ALP file is not within the receiver’s flash memory, but on the host, and where the host needs to repeatedly deliver data to the GNSS receiver. This allows support of the AlmanacPlus functionality for GNSS receivers which do not have flash memory. For messaging details of an implementation where the data is to reside in the receiver’s flash memory, see Flash-based AlmanacPlus Overview.

In the following, the GNSS receiver is called the client, as it primarily requests data, and the host CPU where the ALP file is located in its entirety is called the server.

The operation is such that the client sends periodic data requests (the ALP client requests ALPSRV-REQ) to the host, and the host should answer them accordingly, as described below at ALPSRV-SRV.

For this mechanism to work, the AID-ALPSRV message needs to be activated using the normal CFG-MSG commands. If it is not activated, no requests are sent out.

The client may attempt to modify the data which is stored on the server, using the ALPSRV-CLI message. The server can safely ignore such a request, in case the ALP file cannot be modified. However, for improved performance for consecutive receiver restarts, it is recommended to modify the data.

Overview of the three versions of AID-ALPSRV messages

<table>
<thead>
<tr>
<th>Short Name</th>
<th>Content</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPSRV-REQ</td>
<td>ALP client requests AlmanacPlus data from server</td>
<td>Client -> Server</td>
</tr>
<tr>
<td>ALPSRV-SRV</td>
<td>ALP server sends AlmanacPlus data to client</td>
<td>Server -> Client</td>
</tr>
<tr>
<td>ALPSRV-CLI</td>
<td>ALP client sends AlmanacPlus data to server.</td>
<td>Client -> Server</td>
</tr>
</tbody>
</table>
15.7.3 Message specifics
The three variants of this message always have a header and variable-size data appended within the same message. The first field, \texttt{idSize} gives the number of bytes where the header within the UBX payload ends and data starts.

In case of the ALP client request, the server must assemble a new message according to the \texttt{AID-ALPSRV-SRV} variant. The header needs to be duplicated for as many as \texttt{idSize} bytes. Additionally, the server needs to fill in the \texttt{fileId} and \texttt{dataSize} fields. Appended to the \texttt{idSize}-sized header, data must be added as requested by the client (from offset \texttt{ofs}, for \texttt{size} number of values).

15.7.3.1 Range checks
The server needs to perform an out-of-bounds check on the \texttt{ofs} (offsets) and \texttt{size} fields, as the client may request data beyond the actually available data. If the client request is within the bounds of available data, the \texttt{dataSize} field needs to be filled in with 2 x the content of the \texttt{size} field (the \texttt{size} field is in units of 16 bits, whereas the \texttt{dataSize} field expects number of bytes). If the client request would request data beyond the limits of the buffer, the data should be reduced accordingly, and this actual number of bytes sent shall be indicated in the \texttt{dataSize} field.

15.7.3.2 Changing ALP files
The server function periodically attempts to receive new ALP data from an upstream server, as the result of an HTTP request or other means of file transfer.

In case a new file becomes available, the server shall indicate this to the client. This is the function of the \texttt{fileId} field.

The server should number ALP files it serves arbitrarily. The only requirement is that the \texttt{fileId} actually is changed when a new file is being served, and that it does not change as long as the same file is being changed.

If the client, as a result of a client request, receives a \texttt{fileId} different from the one in earlier requests' replies, it will reinitialize the ALP engine and request data anew.

Further, if the client attempts to send data to the server, using the \texttt{ALPSRV-CLI} method, it indicates, which \texttt{fileId} needs to be written. The server shall ignore that request in case the \texttt{fileId} numbers do not match.

15.7.3.3 Sample Code
\texttt{u-blox} makes available sample code, written in C language, showing a server implementation, serving ALP data from its file system to a client. Please contact your nearest \texttt{u-blox} Field Application Engineer to receive a copy.
NMEA Protocol

16 Protocol Overview

NMEA messages sent by the GNSS receiver are based on NMEA 0183 Version 2.3. The following picture shows the structure of a NMEA protocol message.

<table>
<thead>
<tr>
<th>Start character</th>
<th>Address field</th>
<th>Data field(s)</th>
<th>Checksum field</th>
<th>End sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td><Address></td>
<td>{.<value>}</td>
<td>*<checksum></td>
<td><CR><LF></td>
</tr>
</tbody>
</table>

Example:

```
$ GP ZDA ,141644.0022,03,2002,00,00 *67 <CR><LF>
```


The NMEA standard allows for proprietary, manufacturer-specific messages to be added. These shall be marked with a manufacturer mnemonic. The mnemonic assigned to u-blox is UBX and is used for all non-standard messages. These proprietary NMEA messages therefore have the address field set to PUBX. The first data field in a PUBX message identifies the message number with two digits.

17 NMEA Protocol Configuration

The NMEA protocol on u-blox receivers can be configured to the need of customer applications using CFG-NMEA.

There are two NMEA standards supported. The default NMEA version is 2.3. Alternatively version 2.1 can be enabled (for details on how this affects the output refer to section Position Fix Flags in NMEA Mode). The NMEA standard differentiates between GPS, GLONASS, and combined GNSS receivers using a two-letter message identifier, the 'Talker ID'. Depending upon device model and system configuration, the u-blox receiver could output messages using any one of these Talker IDs.

By default, receivers configured to support GPS, SBAS and QZSS use the 'GP' Talker ID, receivers configured to support GLONASS use the 'GL' Talker ID, and receivers configured for any other GNSS or any other combinations of GNSS use the 'GN' Talker ID.

NMEA defines a satellite numbering system for GPS, SBAS, and GLONASS. Satellite numbers for other GNSS can be configured using CFG-NMEA. Unknown satellite numbers are always reported as a null NMEA field (i.e.
The NMEA specification indicates that the GGA message is GPS specific. However, u-blox receivers support the output of a GGA message for each of the Talker IDs.

NMEA filtering flags

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position filtering</td>
<td>Enable to permit positions from failed or invalid fixes to be reported (with the “V” status flag to indicate that the data is not valid).</td>
</tr>
<tr>
<td>Valid position filtering</td>
<td>Enable to permit positions from invalid fixes to be reported (with the “V” status flag to indicate that the data is not valid).</td>
</tr>
<tr>
<td>Time filtering</td>
<td>Enable to permit the receiver’s best knowledge of time to be output, even though it might be wrong.</td>
</tr>
<tr>
<td>Date filtering</td>
<td>Enable to permit the receiver’s best knowledge of date to be output, even though it might be wrong.</td>
</tr>
<tr>
<td>GPS-only filtering</td>
<td>Enable to restrict output to only report GPS satellites.</td>
</tr>
<tr>
<td>Track filtering</td>
<td>Enable to permit course over ground (COG) to be reported even when it would otherwise be frozen.</td>
</tr>
</tbody>
</table>

NMEA flags

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility Mode</td>
<td>Some older NMEA applications expect the NMEA output to be formatted in a specific way, for example, they will only work if the latitude and longitude have exactly four digits behind the decimal point. u-blox receivers offer a compatibility mode to support these legacy applications.</td>
</tr>
<tr>
<td>Consideration Mode</td>
<td>u-blox receivers use a sophisticated signal quality detection scheme, in order to produce the best possible position output. This algorithm considers all SV measurements, and may eventually decide to only use a subset thereof, if it improves the overall position accuracy. If Consideration mode is enabled, all satellites, which were considered for navigation, are communicated as being used for the position determination. If Consideration Mode is disabled, only those satellites which after the consideration step remained in the position output are marked as being used.</td>
</tr>
</tbody>
</table>

Extended configuration

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNSS to filter</td>
<td>Filters satellites based on their GNSS</td>
</tr>
<tr>
<td>Satellite numbering</td>
<td>This field configures the display of satellites that do not have an NMEA-defined value. Note: this does not apply to satellites with an unknown ID.</td>
</tr>
<tr>
<td>Main Talker ID</td>
<td>By default the main Talker ID (i.e. the Talker ID used for all messages other than GSV) is determined by the GNSS assignment of the receiver's channels (see UBX-CFG-GNSS). This field enables the main Talker ID to be overridden.</td>
</tr>
<tr>
<td>GSV Talker ID</td>
<td>By default the Talker ID for GSV messages is GNSS specific (as defined by NMEA). This field enables the GSV Talker ID to be overridden.</td>
</tr>
</tbody>
</table>

18 Latitude and Longitude Format

According to the NMEA Standard, Latitude and Longitude are output in the format Degrees, Minutes and (Decimal) Fractions of Minutes. To convert to Degrees and Fractions of Degrees, or Degrees, Minutes, Seconds and Fractions of seconds, the ‘Minutes’ and ‘Fractional Minutes’ parts need to be converted. In other words: If the GPS Receiver reports a Latitude of 4717.112671 North and Longitude of 00833.914843 East, this is
Latitude 47 Degrees, 17.112671 Minutes
Longitude 8 Degrees, 33.914843 Minutes
or
Latitude 47 Degrees, 17 Minutes, 6.76026 Seconds
Longitude 8 Degrees, 33 Minutes, 54.89058 Seconds
or
Latitude 47.28521118 Degrees
Longitude 8.56524738 Degrees

19 Position Fix Flags in NMEA
This section shows how u-blox implements the NMEA protocol and the conditions determining how flags are set.

Flags in NMEA 2.3 and above

<table>
<thead>
<tr>
<th>NMEA Message: Field</th>
<th>No position fix (at power-up, after losing satellite lock)</th>
<th>GNSS fix, but user limits exceeded</th>
<th>Dead reckoning fix, but user limits exceeded</th>
<th>Dead reckoning fix (ADR with external sensors, linear extrapolation, or map matching)</th>
<th>2D GNSS fix</th>
<th>3D GNSS fix</th>
<th>Combined GNSS/dead reckoning fix (ADR with external sensors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLL, RMC: status</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>GGA: quality</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>1 / 2</td>
<td>1 / 2</td>
<td>1 / 2</td>
</tr>
<tr>
<td>GSA: navMode</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GLL, RMC, VTG, GNS: posMode</td>
<td>N</td>
<td>N</td>
<td>E</td>
<td>E</td>
<td>A / D</td>
<td>A / D</td>
<td>A / D</td>
</tr>
</tbody>
</table>

Flags in NMEA 2.1 and below
The flags in NMEA 2.1 and below are the same as NMEA 2.3 and above but with the following differences:
- The posMode field is not output for GLL, RMC and VTG messages (each message has one field less).
- The GGA quality field is set to 1 (instead of 6) For both types of dead reckoning fix.

20 Output of invalid/unknown data
By default the receiver will not output invalid data. In such cases, it will output empty fields.
A valid position fix is reported as follows:

$GPGLL, 4717.11634, N, 00833.91297, E, 124923.00, A, A*6E
An invalid position fix (but time valid) is reported as follows:

$GPGLL, , , , , 124924.00, V, N*42
If Time is unknown (e.g. during a cold-start):

$GPGLL, , , , , V, N*64
Please note:

An exception from the above default are dead reckoning fixes, which are also output when invalid (user limits exceeded).
Output of invalid data marked with the ‘Invalid/Valid’ Flags can be enabled using the UBX protocol message `CFG-NMEA`.

Differing from the NMEA standard, u-blox reports valid dead reckoning fixes with user limits met (not exceeded) as valid (A) instead of invalid (V).

21 NMEA Messages Overview

When configuring NMEA messages using the UBX protocol message `CFG-MSG`, the Class/Ids shown in the table shall be used.

<table>
<thead>
<tr>
<th>Page</th>
<th>Mnemonic</th>
<th>Cls/ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEA Standard Messages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>DTM</td>
<td>0xF0 0x0A</td>
<td>Datum Reference</td>
</tr>
<tr>
<td>46</td>
<td>GBS</td>
<td>0xF0 0x09</td>
<td>GNSS Satellite Fault Detection</td>
</tr>
<tr>
<td>47</td>
<td>GGA</td>
<td>0xF0 0x00</td>
<td>Global positioning system fix data</td>
</tr>
<tr>
<td>48</td>
<td>GLL</td>
<td>0xF0 0x01</td>
<td>Latitude and longitude, with time of position fix and status</td>
</tr>
<tr>
<td>49</td>
<td>GLQ</td>
<td>0xF0 0x43</td>
<td>Poll a standard message (if the current Talker ID is GL)</td>
</tr>
<tr>
<td>49</td>
<td>GNQ</td>
<td>0xF0 0x42</td>
<td>Poll a standard message (if the current Talker ID is GN)</td>
</tr>
<tr>
<td>50</td>
<td>GNS</td>
<td>0xF0 0x0D</td>
<td>GNSS fix data</td>
</tr>
<tr>
<td>51</td>
<td>GPQ</td>
<td>0xF0 0x40</td>
<td>Poll a standard message (if the current Talker ID is GP)</td>
</tr>
<tr>
<td>51</td>
<td>GRS</td>
<td>0xF0 0x06</td>
<td>GNSS Range Residuals</td>
</tr>
<tr>
<td>52</td>
<td>GSA</td>
<td>0xF0 0x02</td>
<td>GNSS DOP and Active Satellites</td>
</tr>
<tr>
<td>53</td>
<td>GST</td>
<td>0xF0 0x07</td>
<td>GNSS Pseudo Range Error Statistics</td>
</tr>
<tr>
<td>54</td>
<td>GSV</td>
<td>0xF0 0x03</td>
<td>GNSS Satellites in View</td>
</tr>
<tr>
<td>55</td>
<td>RMC</td>
<td>0xF0 0x04</td>
<td>Recommended Minimum data</td>
</tr>
<tr>
<td>56</td>
<td>TXT</td>
<td>0xF0 0x41</td>
<td>Text Transmission</td>
</tr>
<tr>
<td>57</td>
<td>VTG</td>
<td>0xF0 0x05</td>
<td>Course over ground and Ground speed</td>
</tr>
<tr>
<td>58</td>
<td>ZDA</td>
<td>0xF0 0x08</td>
<td>Time and Date</td>
</tr>
<tr>
<td>NMEA PUBX Messages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>CONFIG</td>
<td>0xF1 0x41</td>
<td>Set Protocols and Baudrate</td>
</tr>
<tr>
<td>60</td>
<td>POSITION</td>
<td>0xF1 0x00</td>
<td>Poll a PUBX,00 message</td>
</tr>
<tr>
<td>60</td>
<td>POSITION</td>
<td>0xF1 0x00</td>
<td>Poll a PUBX,00 message</td>
</tr>
<tr>
<td>62</td>
<td>RATE</td>
<td>0xF1 0x40</td>
<td>Set NMEA message output rate</td>
</tr>
<tr>
<td>63</td>
<td>SVSTATUS</td>
<td>0xF1 0x03</td>
<td>Poll a PUBX,03 message</td>
</tr>
<tr>
<td>63</td>
<td>SVSTATUS</td>
<td>0xF1 0x03</td>
<td>Poll a PUBX,03 message</td>
</tr>
<tr>
<td>64</td>
<td>TIME</td>
<td>0xF1 0x04</td>
<td>Poll a PUBX,04 message</td>
</tr>
<tr>
<td>65</td>
<td>TIME</td>
<td>0xF1 0x04</td>
<td>Poll a PUBX,04 message</td>
</tr>
</tbody>
</table>

GPS.G6-SW-12013 Public Release Page 44 of 168
22 Standard Messages

Standard Messages: i.e. Messages as defined in the NMEA Standard.

22.1 DTM

22.1.1 Datum Reference

<table>
<thead>
<tr>
<th>Message</th>
<th>DTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Datum Reference</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output Message</td>
</tr>
<tr>
<td>Comment</td>
<td>This message gives the difference between the current datum and the reference datum. The current datum defaults to WGS84. The reference datum cannot be changed and is always set to WGS84.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Info</th>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF0 0x0A</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Message Structure:

\$xxDTM,datum,subDatum,lat,NS,lon,EW,alt,refDatum*cs<CR><LF>

Example:

\$GPDTM,W84,0.0,N,0.0,E,0.0,W84*6F
\n\$GPDTM,999,0.08,N,0.07,E,-47.7,W84*1C

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxDTM</td>
<td>-</td>
<td>string</td>
<td>$GPDTM</td>
<td>DTM Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>datum</td>
<td>-</td>
<td>string</td>
<td>W84</td>
<td>Local datum code: W84 = WGS84, 999 = user defined</td>
</tr>
<tr>
<td>2</td>
<td>subDatum</td>
<td>-</td>
<td>string</td>
<td>-</td>
<td>A null field</td>
</tr>
<tr>
<td>3</td>
<td>lat</td>
<td>min</td>
<td>numeric</td>
<td>0.08</td>
<td>Offset in Latitude</td>
</tr>
<tr>
<td>4</td>
<td>NS</td>
<td>-</td>
<td>character</td>
<td>S</td>
<td>North/South indicator</td>
</tr>
<tr>
<td>5</td>
<td>lon</td>
<td>min</td>
<td>numeric</td>
<td>0.07</td>
<td>Offset in Longitude</td>
</tr>
<tr>
<td>6</td>
<td>EW</td>
<td>-</td>
<td>character</td>
<td>E</td>
<td>East/West indicator</td>
</tr>
<tr>
<td>7</td>
<td>alt</td>
<td>m</td>
<td>numeric</td>
<td>-2.8</td>
<td>Offset in altitude</td>
</tr>
<tr>
<td>8</td>
<td>refDatum</td>
<td>-</td>
<td>string</td>
<td>W84</td>
<td>Reference datum code (always W84 = WGS 84)</td>
</tr>
<tr>
<td>9</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*67</td>
<td>Checksum</td>
</tr>
<tr>
<td>10</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.2 GBS

22.2.1 GNSS Satellite Fault Detection

<table>
<thead>
<tr>
<th>Message</th>
<th>GBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>GNSS Satellite Fault Detection</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output Message</td>
</tr>
</tbody>
</table>

Comment: This message outputs the results of the Receiver Autonomous Integrity Monitoring Algorithm (RAIM).

- The fields `errLat`, `errLon` and `errAlt` output the standard deviation of the position calculation, using all satellites which pass the RAIM test successfully.
- The fields `errLat`, `errLon` and `errAlt` are only output if the RAIM process passed successfully (i.e. no or successful edits happened). These fields are never output if 4 or fewer satellites are used for the navigation calculation (because, in such cases, integrity cannot be determined by the receiver autonomously).
- The fields `prob`, `bias` and `stddev` are only output if at least one satellite failed in the RAIM test. If more than one satellites fail the RAIM test, only the information for the worst satellite is output in this message.

Message Info

<table>
<thead>
<tr>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF0 0x09</td>
<td>11</td>
</tr>
</tbody>
</table>

Message Structure:

```
$xxGBS,time,errLat,errLon,errAlt,svid,prob,bias,stddev*cs<CR><LF>
```

Example:

```
$GPGBS,235503.00,1.6,1.4,3.2,,,-21.4,3.8*5B
$GPGBS,235458.00,1.4,1.3,3.1,03,-21.4,3.8*5B
```

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGBS</td>
<td>-</td>
<td>string</td>
<td>$GPGBS</td>
<td>GBS Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>time</td>
<td>-</td>
<td>hhmmss.ss</td>
<td>235503.00</td>
<td>UTC time to which this RAIM sentence belongs, see note on UTC representation</td>
</tr>
<tr>
<td>2</td>
<td>errLat</td>
<td>m</td>
<td>numeric</td>
<td>1.6</td>
<td>Expected error in latitude</td>
</tr>
<tr>
<td>3</td>
<td>errLon</td>
<td>m</td>
<td>numeric</td>
<td>1.4</td>
<td>Expected error in longitude</td>
</tr>
<tr>
<td>4</td>
<td>errAlt</td>
<td>m</td>
<td>numeric</td>
<td>3.2</td>
<td>Expected error in altitude</td>
</tr>
<tr>
<td>5</td>
<td>svid</td>
<td>-</td>
<td>numeric</td>
<td>03</td>
<td>Satellite ID of most likely failed satellite</td>
</tr>
<tr>
<td>6</td>
<td>prob</td>
<td>-</td>
<td>numeric</td>
<td>-</td>
<td>Probability of missed detection, not supported (empty)</td>
</tr>
<tr>
<td>7</td>
<td>bias</td>
<td>m</td>
<td>numeric</td>
<td>-21.4</td>
<td>Estimate on most likely failed satellite (a priori residual)</td>
</tr>
<tr>
<td>8</td>
<td>stddev</td>
<td>m</td>
<td>numeric</td>
<td>3.8</td>
<td>Standard deviation of estimated bias</td>
</tr>
<tr>
<td>9</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*5B</td>
<td>Checksum</td>
</tr>
<tr>
<td>10</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.3 GGA

22.3.1 Global positioning system fix data

<table>
<thead>
<tr>
<th>Message</th>
<th>GGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Global positioning system fix data</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output Message</td>
</tr>
<tr>
<td>Comment</td>
<td>The output of this message is dependent on the currently selected datum (default: WGS84) Time and position, together with GPS fixing related data (number of satellites in use, and the resulting HDOP, age of differential data if in use, etc.).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Info</th>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xF0 0x00</td>
<td>17</td>
</tr>
</tbody>
</table>

Message Structure:

```
$xxGGA,time,lat,NS,long,EW,quality,numSV,HDOP,alt,M,sep,M,diffAge,diffStation*cs<CR><LF>
```

Example:

```
$GPGGA,092725.00,4717.11399,N,00833.91590,E,1,08,1.01,499.6,M,48.0,M,,*5B
```

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGGA</td>
<td>-</td>
<td>string</td>
<td>$GPGGA</td>
<td>GGA Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>time</td>
<td>-</td>
<td>hhmmss.ss</td>
<td>092725.00</td>
<td>UTC time, see note on UTC representation</td>
</tr>
<tr>
<td>2</td>
<td>lat</td>
<td>-</td>
<td>ddmm.mmmmm</td>
<td>4717.11399</td>
<td>Latitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td>3</td>
<td>NS</td>
<td>-</td>
<td>character</td>
<td>N</td>
<td>North/South indicator</td>
</tr>
<tr>
<td>4</td>
<td>long</td>
<td>-</td>
<td>dddmm.mmmmm</td>
<td>00833.91590</td>
<td>Longitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td>5</td>
<td>EW</td>
<td>-</td>
<td>character</td>
<td>E</td>
<td>East/West indicator</td>
</tr>
<tr>
<td>6</td>
<td>quality</td>
<td>-</td>
<td>digit</td>
<td>1</td>
<td>Quality indicator for position fix, see table below and position fix flags description</td>
</tr>
<tr>
<td>7</td>
<td>numSV</td>
<td>-</td>
<td>numeric</td>
<td>08</td>
<td>Number of satellites used (range: 0-12)</td>
</tr>
<tr>
<td>8</td>
<td>HDOP</td>
<td>-</td>
<td>numeric</td>
<td>1.01</td>
<td>Horizontal Dilution of Precision</td>
</tr>
<tr>
<td>9</td>
<td>alt</td>
<td>m</td>
<td>numeric</td>
<td>499.6</td>
<td>Altitude above mean sea level</td>
</tr>
<tr>
<td>10</td>
<td>uAlt</td>
<td>-</td>
<td>character</td>
<td>M</td>
<td>Altitude units: meters (fixed field)</td>
</tr>
<tr>
<td>11</td>
<td>sep</td>
<td>m</td>
<td>numeric</td>
<td>48.0</td>
<td>Geoid separation: difference between geoid and mean sea level</td>
</tr>
<tr>
<td>12</td>
<td>uSep</td>
<td>-</td>
<td>character</td>
<td>M</td>
<td>Separation units: meters (fixed field)</td>
</tr>
<tr>
<td>13</td>
<td>diffAge</td>
<td>s</td>
<td>numeric</td>
<td>-</td>
<td>Age of differential corrections (blank when DGPS is not used)</td>
</tr>
<tr>
<td>14</td>
<td>diffStat</td>
<td>-</td>
<td>numeric</td>
<td>-</td>
<td>ID of station providing differential corrections (blank when DGPS is not used)</td>
</tr>
<tr>
<td>15</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*5B</td>
<td>Checksum</td>
</tr>
<tr>
<td>16</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
Table Quality Indicator

<table>
<thead>
<tr>
<th>Quality Indicator</th>
<th>Description, see also position fix flags description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Fix / Invalid</td>
</tr>
<tr>
<td>1</td>
<td>Standard GPS (2D/3D)</td>
</tr>
<tr>
<td>2</td>
<td>Differential GPS</td>
</tr>
<tr>
<td>6</td>
<td>Estimated (DR) Fix</td>
</tr>
</tbody>
</table>

22.4 GLL

22.4.1 Latitude and longitude, with time of position fix and status

<table>
<thead>
<tr>
<th>Message</th>
<th>GLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Latitude and longitude, with time of position fix and status</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Output Message |
| Comment | The output of this message is dependent on the currently selected datum (default: WGS84) |

<table>
<thead>
<tr>
<th>Message Info</th>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xF0 0x01</td>
<td>(9) or (10)</td>
</tr>
</tbody>
</table>

Message Structure:

$xxGLL, lat, NS, long, EW, time, status, posMode*cs<CR><LF>

Example:

$GPGLL,4717.11364,N,00833.91565,E,092321.00,A,A*60

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGLL</td>
<td>-</td>
<td>string</td>
<td>$GPGLL</td>
<td>GLL Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>lat</td>
<td>-</td>
<td>dddmm.</td>
<td>4717.11364</td>
<td>Latitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mmmmmm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NS</td>
<td>-</td>
<td>character</td>
<td>N</td>
<td>North/South indicator</td>
</tr>
<tr>
<td>3</td>
<td>long</td>
<td>-</td>
<td>dddmm.</td>
<td>00833.91565</td>
<td>Longitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mmmmmm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EW</td>
<td>-</td>
<td>character</td>
<td>E</td>
<td>East/West indicator</td>
</tr>
<tr>
<td>5</td>
<td>time</td>
<td>-</td>
<td>hhhmss.ss</td>
<td>092321.00</td>
<td>UTC time, see note on UTC representation</td>
</tr>
<tr>
<td>6</td>
<td>status</td>
<td>-</td>
<td>character</td>
<td>A</td>
<td>V = Data invalid or receiver warning, A = Data valid. See position fix flags description.</td>
</tr>
</tbody>
</table>

Start of optional block

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>posMode</td>
<td>-</td>
<td>character</td>
<td>A</td>
<td>Positioning mode, see position fix flags description</td>
</tr>
</tbody>
</table>

End of optional block

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*60</td>
<td>Checksum</td>
</tr>
<tr>
<td>8</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.5 GLQ

22.5.1 Poll a standard message (if the current Talker ID is GL)

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>Firmware</th>
<th>Type</th>
<th>Comment</th>
<th>Message Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLQ</td>
<td>Poll a standard message (if the current Talker ID is GL)</td>
<td>Supported on: • u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
<td>Input Message</td>
<td>Polls a standard NMEA message if the current Talker ID is GL</td>
<td>ID for CFG-MSG 0xF0 0x43 Number of fields 4</td>
</tr>
</tbody>
</table>

Message Structure:

$xxGLQ, msgId*cs<CR><LF>

Example:

$EIGLQ, RMC*3A

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGLQ</td>
<td>-</td>
<td>string</td>
<td>$EIGLQ</td>
<td>GLQ Message ID (xx = Talker ID of the device requesting the poll)</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>-</td>
<td>string</td>
<td>RMC</td>
<td>Message ID of the message to be polled</td>
</tr>
<tr>
<td>2</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*3A</td>
<td>Checksum</td>
</tr>
<tr>
<td>3</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>

22.6 GNQ

22.6.1 Poll a standard message (if the current Talker ID is GN)

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>Firmware</th>
<th>Type</th>
<th>Comment</th>
<th>Message Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNQ</td>
<td>Poll a standard message (if the current Talker ID is GN)</td>
<td>Supported on: • u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
<td>Input Message</td>
<td>Polls a standard NMEA message if the current Talker ID is GN</td>
<td>ID for CFG-MSG 0xF0 0x42 Number of fields 4</td>
</tr>
</tbody>
</table>

Message Structure:

$xxGNQ, msgId*cs<CR><LF>

Example:

$EIGNQ, RMC*3A

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGNQ</td>
<td>-</td>
<td>string</td>
<td>$EIGNQ</td>
<td>GNQ Message ID (xx = Talker ID of the device requesting the poll)</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>-</td>
<td>string</td>
<td>RMC</td>
<td>Message ID of the message to be polled</td>
</tr>
<tr>
<td>2</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*3A</td>
<td>Checksum</td>
</tr>
<tr>
<td>3</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.7 GNS

22.7.1 GNSS fix data

<table>
<thead>
<tr>
<th>Message</th>
<th>GNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>GNSS fix data</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Output Message | |
| Comment | The output of this message is dependent on the currently selected datum (default: WGS84). Time and position, together with GNSS fixing related data (number of satellites in use, and the resulting HDOP, age of differential data if in use, etc.). |
| Message Info | ID for CFG-MSG | Number of fields |
| | 0xF0 0x0D | 15 |

Message Structure:

$xxGNS,time,lat,NS,long,EW,posMode,numSV,HDOP,alt,altRef,diffAge,diffStation*cs<CR><LF>

Example:

$GPGNS,091547.00,5114.50897,N,00012.28663,W,AA,10,0.83,111.1,45.6,,*71

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGNS</td>
<td>-</td>
<td>string</td>
<td>$GPGNS</td>
<td>GNS Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>time</td>
<td>-</td>
<td>hhmsss.ss</td>
<td>091547.00</td>
<td>UTC time, see note on UTC representation</td>
</tr>
<tr>
<td>2</td>
<td>lat</td>
<td>-</td>
<td>ddmm.mmmm</td>
<td>5114.50897</td>
<td>Latitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td>3</td>
<td>NS</td>
<td>-</td>
<td>character</td>
<td>N</td>
<td>North/South indicator</td>
</tr>
<tr>
<td>4</td>
<td>long</td>
<td>-</td>
<td>dddmm.mmmm</td>
<td>00012.28663</td>
<td>Longitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td>5</td>
<td>EW</td>
<td>-</td>
<td>character</td>
<td>E</td>
<td>East/West indicator</td>
</tr>
<tr>
<td>6</td>
<td>posMode</td>
<td>-</td>
<td>character</td>
<td>AA</td>
<td>Positioning mode, see position fix flags description. First character for GPS, second character for GLONASS</td>
</tr>
<tr>
<td>7</td>
<td>numSV</td>
<td>-</td>
<td>numeric</td>
<td>10</td>
<td>Number of satellites used (range: 0-99)</td>
</tr>
<tr>
<td>8</td>
<td>HDOP</td>
<td>-</td>
<td>numeric</td>
<td>0.83</td>
<td>Horizontal Dilution of Precision</td>
</tr>
<tr>
<td>9</td>
<td>alt</td>
<td>m</td>
<td>numeric</td>
<td>111.1</td>
<td>Altitude above mean sea level</td>
</tr>
<tr>
<td>10</td>
<td>sep</td>
<td>m</td>
<td>numeric</td>
<td>45.6</td>
<td>Geoid separation: difference between geoid and mean sea level</td>
</tr>
<tr>
<td>11</td>
<td>diffAge</td>
<td>s</td>
<td>numeric</td>
<td>-</td>
<td>Age of differential corrections (blank when DGPS is not used)</td>
</tr>
<tr>
<td>12</td>
<td>diffStation</td>
<td>-</td>
<td>numeric</td>
<td>-</td>
<td>ID of station providing differential corrections (blank when DGPS is not used)</td>
</tr>
<tr>
<td>13</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*71</td>
<td>Checksum</td>
</tr>
<tr>
<td>14</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.8 GPQ

22.8.1 Poll a standard message (if the current Talker ID is GP)

<table>
<thead>
<tr>
<th>Message</th>
<th>GPQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll a standard message (if the current Talker ID is GP)</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input Message</td>
</tr>
<tr>
<td>Comment</td>
<td>Polls a standard NMEA message if the current Talker ID is GP</td>
</tr>
<tr>
<td>Message Info</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID for CFG-MSG</td>
</tr>
<tr>
<td></td>
<td>0xF0 0x40</td>
</tr>
</tbody>
</table>

Message Structure:

$xxGPQ, msgId*cs<CR><LF>

Example:

$EIGPQ, RMC*3A

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGPQ</td>
<td></td>
<td>string</td>
<td>$EIGPQ</td>
<td>GPQ Message ID (xx = Talker ID of the device requesting the poll)</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td></td>
<td>string</td>
<td>RMC</td>
<td>Message ID of the message to be polled</td>
</tr>
<tr>
<td>2</td>
<td>cs</td>
<td></td>
<td>hexadecimal</td>
<td>*3A</td>
<td>Checksum</td>
</tr>
<tr>
<td>3</td>
<td><CR><LF></td>
<td></td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>

22.9 GRS

22.9.1 GNSS Range Residuals

<table>
<thead>
<tr>
<th>Message</th>
<th>GRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>GNSS Range Residuals</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output Message</td>
</tr>
<tr>
<td>Comment</td>
<td>This message relates to associated GGA and GSA messages.</td>
</tr>
<tr>
<td></td>
<td>If less than 12 SVs are available, the remaining fields are output empty. If more than 12 SVs are used, only the residuals of the first 12 SVs are output, in order to remain consistent with the NMEA standard.</td>
</tr>
<tr>
<td>Message Info</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ID for CFG-MSG</td>
</tr>
<tr>
<td></td>
<td>0xF0 0x06</td>
</tr>
</tbody>
</table>

Message Structure:

$xxGRS, time, mode {}, residual]*cs<CR><LF>

Example:

$GPGRS, 082632.00, 1, 0.54, 0.83, 1.00, 1.02, -2.12, 2.64, -0.71, -1.18, 0.25,,,*70

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGRS</td>
<td></td>
<td>string</td>
<td>$GPGRS</td>
<td>GRS Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>time</td>
<td></td>
<td>hhhmss.ss</td>
<td>082632.00</td>
<td>UTC time of associated position fix, see note on UTC representation</td>
</tr>
</tbody>
</table>
GRS continued

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>mode</td>
<td>-</td>
<td>digit</td>
<td>1</td>
<td>Mode (see table below), u-blox receivers will always output Mode 1 residuals</td>
</tr>
</tbody>
</table>

Start of repeated block (12 times)

| 3 + 1*N | residual | m | numeric | 0.54 | Range residuals for SVs used in navigation. The SV order matches the order from the **GSA** sentence. |

End of repeated block

<table>
<thead>
<tr>
<th>15</th>
<th>cs</th>
<th>-</th>
<th>hexadecimal</th>
<th>*70</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>

Table Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Residuals were used to calculate the position given in the matching GGA sentence.</td>
</tr>
<tr>
<td>1</td>
<td>Residuals were recomputed after the GGA position was computed.</td>
</tr>
</tbody>
</table>

22.10 GSA

22.10.1 GNSS DOP and Active Satellites

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSA</td>
<td>GNSS DOP and Active Satellites</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Firmware</th>
<th>Supported on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Output Message</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The GPS receiver operating mode, satellites used for navigation, and DOP values.</td>
</tr>
</tbody>
</table>

* If less than 12 SVs are used for navigation, the remaining fields are left empty. If more than 12 SVs are used for navigation, only the IDs of the first 12 are output.
* The SV numbers (fields ‘sv’) are in the range of 1 to 32 for GPS satellites, and 33 to 64 for SBAS satellites (33 = SBAS PRN 120, 34 = SBAS PRN 121, and so on)

<table>
<thead>
<tr>
<th>Message Info</th>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xF0 0x02</td>
<td>20</td>
</tr>
</tbody>
</table>

Message Structure:

\$xxGSA, opMode, navMode(, sv), PDOP, HDOP, VDOP*cs<CR><LF>

Example:

\$GPGSA,A,3,23,29,07,08,09,18,26,28,,1.94,1.18,1.54*0D

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGSA</td>
<td>-</td>
<td>string</td>
<td>$GPGSA</td>
<td>GSA Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>opMode</td>
<td>-</td>
<td>character</td>
<td>A</td>
<td>Operation mode, see first table below</td>
</tr>
<tr>
<td>2</td>
<td>navMode</td>
<td>-</td>
<td>digit</td>
<td>3</td>
<td>Navigation mode, see second table below and position fix flags description</td>
</tr>
</tbody>
</table>

Start of repeated block (12 times)

| 3 + 1*N | sv | - | numeric | 29 | Satellite number |

End of repeated block

| 15 | PDOP | - | numeric | 1.94 | Position dilution of precision |
GSA continued

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>HDOP</td>
<td>-</td>
<td>numeric</td>
<td>1.18</td>
<td>Horizontal dilution of precision</td>
</tr>
<tr>
<td>17</td>
<td>VDOP</td>
<td>-</td>
<td>numeric</td>
<td>1.54</td>
<td>Vertical dilution of precision</td>
</tr>
<tr>
<td>18</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*0D</td>
<td>Checksum</td>
</tr>
<tr>
<td>19</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>

Table Operation Mode

<table>
<thead>
<tr>
<th>Operation Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Manually set to operate in 2D or 3D mode</td>
</tr>
<tr>
<td>A</td>
<td>Automaticallyswitching between 2D or 3D mode</td>
</tr>
</tbody>
</table>

Table Navigation Mode

<table>
<thead>
<tr>
<th>Navigation Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fix not available</td>
</tr>
<tr>
<td>2</td>
<td>2D Fix</td>
</tr>
<tr>
<td>3</td>
<td>3D Fix</td>
</tr>
</tbody>
</table>

22.11 GST

22.11.1 GNSS Pseudo Range Error Statistics

<table>
<thead>
<tr>
<th>Message</th>
<th>GST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>GNSS Pseudo Range Error Statistics</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output Message</td>
</tr>
<tr>
<td>Comment</td>
<td>This message reports statistical information on the quality of the position solution.</td>
</tr>
<tr>
<td>Message Info</td>
<td>ID for CFG-MSG</td>
</tr>
<tr>
<td></td>
<td>0xF0 0x07</td>
</tr>
</tbody>
</table>

Message Structure:

$xxGST, time, rangeRms, stdMajor, stdMinor, orient, stdLat, stdLong, stdAlt*cs<CR><LF>

Example:

$GP3GST,082356.00,1.8,,1.7,1.3,2.2*7E

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGST</td>
<td>-</td>
<td>string</td>
<td>$GPGST</td>
<td>GST Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>time</td>
<td>-</td>
<td>hhmmss.ss</td>
<td>082356.00</td>
<td>UTC time of associated position fix, see note on UTC representation</td>
</tr>
<tr>
<td>2</td>
<td>rangeRms</td>
<td>m</td>
<td>numeric</td>
<td>1.8</td>
<td>RMS value of the standard deviation of the ranges</td>
</tr>
<tr>
<td>3</td>
<td>stdMajor</td>
<td>m</td>
<td>numeric</td>
<td>-</td>
<td>Standard deviation of semi-major axis (blank - not supported)</td>
</tr>
<tr>
<td>4</td>
<td>stdMinor</td>
<td>m</td>
<td>numeric</td>
<td>-</td>
<td>Standard deviation of semi-minor axis (blank - not supported)</td>
</tr>
<tr>
<td>5</td>
<td>orient</td>
<td>deg</td>
<td>numeric</td>
<td>-</td>
<td>Orientation of semi-major axis (blank - not supported)</td>
</tr>
<tr>
<td>6</td>
<td>stdLat</td>
<td>m</td>
<td>numeric</td>
<td>1.7</td>
<td>Standard deviation of latitude error</td>
</tr>
<tr>
<td>7</td>
<td>stdLong</td>
<td>m</td>
<td>numeric</td>
<td>1.3</td>
<td>Standard deviation of longitude error</td>
</tr>
</tbody>
</table>
22.12 GSV

22.12.1 GNSS Satellites in View

Message

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxGSV</td>
<td>-</td>
<td>string</td>
<td>$GPGSV</td>
<td>GSV Message ID (xx = GSV Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>numMsg</td>
<td>-</td>
<td>digit</td>
<td>3</td>
<td>Number of messages, total number of GSV messages being output</td>
</tr>
<tr>
<td>2</td>
<td>msgNum</td>
<td>-</td>
<td>digit</td>
<td>1</td>
<td>Number of this message</td>
</tr>
<tr>
<td>3</td>
<td>numSV</td>
<td>-</td>
<td>numeric</td>
<td>10</td>
<td>Number of satellites in view</td>
</tr>
</tbody>
</table>

Start of repeated block (1..4 times)

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 + 4*N</td>
<td>sv</td>
<td>-</td>
<td>numeric</td>
<td>23</td>
<td>Satellite ID</td>
</tr>
<tr>
<td>5 + 4*N</td>
<td>elv</td>
<td>deg</td>
<td>numeric</td>
<td>38</td>
<td>Elevation (range 0-90)</td>
</tr>
<tr>
<td>6 + 4*N</td>
<td>az</td>
<td>deg</td>
<td>numeric</td>
<td>230</td>
<td>Azimuth, (range 0-359)</td>
</tr>
<tr>
<td>7 + 4*N</td>
<td>cno</td>
<td>dBHz</td>
<td>numeric</td>
<td>44</td>
<td>Signal strength (C/No, range 0-99), blank when not tracking</td>
</tr>
</tbody>
</table>

End of repeated block

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5..16</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*7F</td>
<td>Checksum</td>
</tr>
<tr>
<td>6..16</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.13 RMC

22.13.1 Recommended Minimum data

<table>
<thead>
<tr>
<th>Message</th>
<th>RMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Recommended Minimum data</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output Message</td>
</tr>
<tr>
<td>Comment</td>
<td>The output of this message is dependent on the currently selected datum (default: WGS84)</td>
</tr>
<tr>
<td></td>
<td>The recommended minimum sentence defined by NMEA for GNSS system data.</td>
</tr>
<tr>
<td>Message Info</td>
<td>ID for CFG-MSG</td>
</tr>
<tr>
<td></td>
<td>0xF0 0x04</td>
</tr>
</tbody>
</table>

Message Structure:

$xxRMC,time,status,lat,NS,long,EW,spd,cog,date,mv,mvEW,posMode*cs<CR><LF>

Example:

$GPRMC,083559.00,A,4717.11437,N,00833.91522,E,0.004,77.52,091202,,,A*57

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxRMC</td>
<td>-</td>
<td>string</td>
<td>$GPRMC</td>
<td>RMC Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>time</td>
<td>-</td>
<td>hhmms.s</td>
<td>083559.00</td>
<td>UTC time, see note on UTC representation</td>
</tr>
<tr>
<td>2</td>
<td>status</td>
<td>-</td>
<td>character</td>
<td>A</td>
<td>Status, V = Navigation receiver warning, A = Data valid, see position fix flags description</td>
</tr>
<tr>
<td>3</td>
<td>lat</td>
<td>-</td>
<td>ddmm.mm</td>
<td>4717.11437</td>
<td>Latitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td>4</td>
<td>NS</td>
<td>-</td>
<td>character</td>
<td>N</td>
<td>North/South indicator</td>
</tr>
<tr>
<td>5</td>
<td>long</td>
<td>-</td>
<td>dddmm.mm</td>
<td>00833.91522</td>
<td>Longitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td>6</td>
<td>EW</td>
<td>-</td>
<td>character</td>
<td>E</td>
<td>East/West indicator</td>
</tr>
<tr>
<td>7</td>
<td>spd</td>
<td>knot</td>
<td>numeric</td>
<td>0.004</td>
<td>Speed over ground</td>
</tr>
<tr>
<td>8</td>
<td>cog</td>
<td>degr</td>
<td>numeric</td>
<td>77.52</td>
<td>Course over ground</td>
</tr>
<tr>
<td>9</td>
<td>date</td>
<td>-</td>
<td>ddmmyy</td>
<td>091202</td>
<td>Date in day, month, year format, see note on UTC representation</td>
</tr>
<tr>
<td>10</td>
<td>mv</td>
<td>degr</td>
<td>numeric</td>
<td>-</td>
<td>Magnetic variation value (blank - not supported)</td>
</tr>
<tr>
<td>11</td>
<td>mvEW</td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Magnetic variation E/W indicator (blank - not supported)</td>
</tr>
<tr>
<td>12</td>
<td>posMode</td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Mode Indicator, see position fix flags description</td>
</tr>
<tr>
<td>13</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*57</td>
<td>Checksum</td>
</tr>
<tr>
<td>14</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.14 TXT

22.14.1 Text Transmission

<table>
<thead>
<tr>
<th>Description</th>
<th>Text Transmission</th>
</tr>
</thead>
</table>

Firmware Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type
- Output Message

Comment
- This message is not configured through UBX-CFG-MSG, but instead through UBX-CFG-INF.
- This message outputs various information on the receiver, such as power-up screen, software version etc. This message can be configured using UBX Protocol message UBX-CFG-INF.

Message Info

<table>
<thead>
<tr>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF0 0x41</td>
<td>7</td>
</tr>
</tbody>
</table>

Message Structure:

```
$xxTXT,numMsg,msgNum,msgType,text*cs<CR><LF>
```

Example:

```
$GPTXT,01,01,02,u-blox ag - www.u-blox.com*50
$GPTXT,01,01,02,ANTARIS ATR0620 HW 00000040*67
```

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxTXT</td>
<td>-</td>
<td>string</td>
<td>$GPTXT</td>
<td>TXT Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>numMsg</td>
<td>-</td>
<td>numeric</td>
<td>01</td>
<td>Total number of messages in this transmission, 01..99</td>
</tr>
<tr>
<td>2</td>
<td>msgNum</td>
<td>-</td>
<td>numeric</td>
<td>01</td>
<td>Message number in this transmission, range 01..xx</td>
</tr>
<tr>
<td>3</td>
<td>msgType</td>
<td>-</td>
<td>numeric</td>
<td>02</td>
<td>Text identifier, u-blox GPS receivers specify the type of the message with this number. 00: Error 01: Warning 02: Notice 07: User</td>
</tr>
<tr>
<td>4</td>
<td>text</td>
<td>-</td>
<td>string</td>
<td>www.u-blox.com</td>
<td>Any ASCII text</td>
</tr>
<tr>
<td>5</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*67</td>
<td>Checksum</td>
</tr>
<tr>
<td>6</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.15 VTG

22.15.1 Course over ground and Ground speed

<table>
<thead>
<tr>
<th>Message Info</th>
<th>VTG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Course over ground and Ground speed</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td>Type</td>
<td>Output Message</td>
</tr>
<tr>
<td>Comment</td>
<td>Velocity is given as Course over Ground (COG) and Speed over Ground (SOG).</td>
</tr>
<tr>
<td>Message Structure:</td>
<td></td>
</tr>
<tr>
<td>$xxVTG,cogt,T,cogm,M,knots,N,kph,K,posMode*cs<CR><LF></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>$GPVTG,77.52,T,,M,0.004,N,0.008,K,A*06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxVTG</td>
<td>-</td>
<td>string</td>
<td>$GPVTG</td>
<td>VTG Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>cogt</td>
<td>degr</td>
<td>numeric</td>
<td>77.52</td>
<td>Course over ground (true)</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>-</td>
<td>character</td>
<td>T</td>
<td>Fixed field: true</td>
</tr>
<tr>
<td>3</td>
<td>cogm</td>
<td>degr</td>
<td>numeric</td>
<td>-</td>
<td>Course over ground (magnetic), not output</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>-</td>
<td>character</td>
<td>M</td>
<td>Fixed field: magnetic</td>
</tr>
<tr>
<td>5</td>
<td>knots</td>
<td>knot</td>
<td>numeric</td>
<td>0.004</td>
<td>Speed over ground</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>-</td>
<td>character</td>
<td>N</td>
<td>Fixed field: knots</td>
</tr>
<tr>
<td>7</td>
<td>kph</td>
<td>km/h</td>
<td>numeric</td>
<td>0.008</td>
<td>Speed over ground</td>
</tr>
<tr>
<td>8</td>
<td>K</td>
<td>-</td>
<td>character</td>
<td>K</td>
<td>Fixed field: kilometers per hour</td>
</tr>
<tr>
<td>9</td>
<td>posMode</td>
<td>-</td>
<td>character</td>
<td>A</td>
<td>Mode Indicator, see position fix flags description</td>
</tr>
<tr>
<td>10</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*06</td>
<td>Checksum</td>
</tr>
<tr>
<td>11</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
22.16 ZDA

22.16.1 Time and Date

<table>
<thead>
<tr>
<th>Message</th>
<th>ZDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Time and Date</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output Message</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
</tbody>
</table>
| Message Info | ID for CFG-MSG Number of fields
| | 0xF0 0x08 9 |

Message Structure:

\[$xxZDA, hhmmss.ss, day, month, year, ltzh, ltzn*cs<CR><LF> \]

Example:

\[$GPZDA, 082710.00, 16, 09, 2002, 00, 00*64 \]

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxZDA</td>
<td>-</td>
<td>string</td>
<td>$GPZDA</td>
<td>ZDA Message ID (xx = current Talker ID)</td>
</tr>
<tr>
<td>1</td>
<td>time</td>
<td>-</td>
<td>hhmmss.ss</td>
<td>082710.00</td>
<td>UTC Time, see note on UTC representation</td>
</tr>
<tr>
<td>2</td>
<td>day</td>
<td>day</td>
<td>dd</td>
<td>16</td>
<td>UTC day (range: 1-31)</td>
</tr>
<tr>
<td>3</td>
<td>month</td>
<td>month</td>
<td>mm</td>
<td>09</td>
<td>UTC month (range: 1-12)</td>
</tr>
<tr>
<td>4</td>
<td>year</td>
<td>year</td>
<td>yyyy</td>
<td>2002</td>
<td>UTC year</td>
</tr>
<tr>
<td>5</td>
<td>ltzh</td>
<td>-</td>
<td>-xx</td>
<td>00</td>
<td>Local time zone hours (fixed to 00)</td>
</tr>
<tr>
<td>6</td>
<td>ltzn</td>
<td>-</td>
<td>zz</td>
<td>00</td>
<td>Local time zone minutes (fixed to 00)</td>
</tr>
<tr>
<td>7</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*64</td>
<td>Checksum</td>
</tr>
<tr>
<td>8</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
23 PUBX Messages

Proprietary Messages: i.e. Messages defined by u-blox.

23.1 CONFIG (PUBX,41)

23.1.1 Set Protocols and Baudrate

<table>
<thead>
<tr>
<th>Message</th>
<th>CONFIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Set Protocols and Baudrate</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Set Message</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Info</td>
<td>ID for CFG-MSG</td>
</tr>
<tr>
<td></td>
<td>0xF1 0x41</td>
</tr>
</tbody>
</table>

Message Structure:

$PUBX,41,portId,inProto,outProto,baudrate,autobauding*cs<CR><LF>

Example:

$PUBX,41,1,0007,0003,19200,0*25

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$PUBX</td>
<td>-</td>
<td>string</td>
<td>$PUBX</td>
<td>Message ID, UBX protocol header, proprietary sentence</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>-</td>
<td>numeric</td>
<td>41</td>
<td>Proprietary message identifier</td>
</tr>
<tr>
<td>2</td>
<td>portId</td>
<td>-</td>
<td>numeric</td>
<td>1</td>
<td>ID of communication port. For a list of port IDs see Serial Communication Ports Description.</td>
</tr>
<tr>
<td>3</td>
<td>inProto</td>
<td>-</td>
<td>hexadecimal</td>
<td>0007</td>
<td>Input protocol mask. Bitmask, specifying which protocols(s) are allowed for input. For details see corresponding field in UBX-CFG-PRT.</td>
</tr>
<tr>
<td>4</td>
<td>outProto</td>
<td>-</td>
<td>hexadecimal</td>
<td>0003</td>
<td>Output protocol mask. Bitmask, specifying which protocols(s) are allowed for input. For details see corresponding field in UBX-CFG-PRT.</td>
</tr>
<tr>
<td>5</td>
<td>baudrate</td>
<td>-</td>
<td>numeric</td>
<td>19200</td>
<td>Baudrate</td>
</tr>
<tr>
<td>6</td>
<td>autobauding</td>
<td>-</td>
<td>numeric</td>
<td>0</td>
<td>Autobauding: 1=enable, 0=disable (not supported on u-blox 5, set to 0)</td>
</tr>
<tr>
<td>7</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*25</td>
<td>Checksum</td>
</tr>
<tr>
<td>8</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
23.2 POSITION (PUBX,00)

23.2.1 Poll a PUBX,00 message

<table>
<thead>
<tr>
<th>Message</th>
<th>POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll a PUBX,00 message</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
 • u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input Message |
| Comment | A PUBX,00 message is polled by sending the PUBX,00 message without any data fields. |
| Message Info |
 ID for CFG-MSG: 0xF1 0x00
 Number of fields: 4 |

Message Structure:

$$\text{PUBX,00} \times 33 \text{<CR><LF>}$$

Example:

$$\text{PUBX,00} \times 33$$

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PUBX</td>
<td>-</td>
<td>string</td>
<td>PUBX</td>
<td>Message ID, UBX protocol header, proprietary sentence</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>-</td>
<td>numeric</td>
<td>00</td>
<td>Set to 00 to poll a PUBX,00 message</td>
</tr>
<tr>
<td>2</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*33</td>
<td>Checksum</td>
</tr>
<tr>
<td>3</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>

23.2.2 Lat/Long Position Data

<table>
<thead>
<tr>
<th>Message</th>
<th>POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Lat/Long Position Data</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
 • u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Output Message |
| Comment | The output of this message is dependent on the currently selected datum (default: WGS84)
 This message contains position solution data. The datum selection may be changed using the message UBX-CFG-DAT. |
| Message Info |
 ID for CFG-MSG: 0xF1 0x00
 Number of fields: 23 |

Message Structure:

$$\text{PUBX,00, time, lat, NS, long, EW, altRef, navStat, hAcc, vAcc, SOG, COG, vVel, diffAge, HDOP, VDOP, TDOP, numSvs, reserved, DR, *cs<CR><LF>}$$

Example:

$$\text{PUBX,00,081350.00,4717.113210,N,00833.915187,E,546.589,G3,2.1,2.0,0.007,77.52,0.007,,0.92,1.19,0.77,9,0,0*5F}$$

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PUBX</td>
<td>-</td>
<td>string</td>
<td>PUBX</td>
<td>Message ID, UBX protocol header, proprietary sentence</td>
</tr>
<tr>
<td>Field No.</td>
<td>Name</td>
<td>Unit</td>
<td>Format</td>
<td>Example</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>-</td>
<td>numeric</td>
<td>00</td>
<td>Proprietary message identifier: 00</td>
</tr>
<tr>
<td>2</td>
<td>time</td>
<td>-</td>
<td>hhmmss.ss</td>
<td>081350.00</td>
<td>UTC time, see note on UTC representation</td>
</tr>
<tr>
<td>3</td>
<td>lat</td>
<td>-</td>
<td>ddmm.mmmm</td>
<td>4717.113210</td>
<td>Longitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td>4</td>
<td>NS</td>
<td>-</td>
<td>character</td>
<td>N</td>
<td>North/South Indicator</td>
</tr>
<tr>
<td>5</td>
<td>long</td>
<td>-</td>
<td>dddmm.mmmm</td>
<td>00833.915187</td>
<td>Longitude (degrees & minutes), see format description</td>
</tr>
<tr>
<td>6</td>
<td>EW</td>
<td>-</td>
<td>character</td>
<td>E</td>
<td>East/West indicator</td>
</tr>
<tr>
<td>7</td>
<td>altRef</td>
<td>m</td>
<td>numeric</td>
<td>546.589</td>
<td>Altitude above user datum ellipsoid.</td>
</tr>
<tr>
<td>8</td>
<td>navStat</td>
<td>-</td>
<td>string</td>
<td>G3</td>
<td>Navigation Status, See Table below</td>
</tr>
<tr>
<td>9</td>
<td>hAcc</td>
<td>m</td>
<td>numeric</td>
<td>2.1</td>
<td>Horizontal accuracy estimate.</td>
</tr>
<tr>
<td>10</td>
<td>vAcc</td>
<td>m</td>
<td>numeric</td>
<td>2.0</td>
<td>Vertical accuracy estimate.</td>
</tr>
<tr>
<td>11</td>
<td>SOG</td>
<td>km/h</td>
<td>numeric</td>
<td>0.007</td>
<td>Speed over ground</td>
</tr>
<tr>
<td>12</td>
<td>COG</td>
<td>deg</td>
<td>numeric</td>
<td>77.52</td>
<td>Course over ground</td>
</tr>
<tr>
<td>13</td>
<td>vVel</td>
<td>m/s</td>
<td>numeric</td>
<td>0.007</td>
<td>Vertical velocity (positive downwards)</td>
</tr>
<tr>
<td>14</td>
<td>diffAge</td>
<td>s</td>
<td>numeric</td>
<td>-</td>
<td>Age of differential corrections (blank when DGPS is not used)</td>
</tr>
<tr>
<td>15</td>
<td>HDOP</td>
<td>-</td>
<td>numeric</td>
<td>0.92</td>
<td>HDOP, Horizontal Dilution of Precision</td>
</tr>
<tr>
<td>16</td>
<td>VDOP</td>
<td>-</td>
<td>numeric</td>
<td>1.19</td>
<td>VDOP, Vertical Dilution of Precision</td>
</tr>
<tr>
<td>17</td>
<td>TDOP</td>
<td>-</td>
<td>numeric</td>
<td>0.77</td>
<td>TDOP, Time Dilution of Precision</td>
</tr>
<tr>
<td>18</td>
<td>numSvs</td>
<td>-</td>
<td>numeric</td>
<td>9</td>
<td>Number of satellites used in the navigation solution</td>
</tr>
<tr>
<td>19</td>
<td>reserved</td>
<td>-</td>
<td>numeric</td>
<td>0</td>
<td>Reserved, always set to 0</td>
</tr>
<tr>
<td>20</td>
<td>DR</td>
<td>-</td>
<td>numeric</td>
<td>0</td>
<td>DR used</td>
</tr>
<tr>
<td>21</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*5B</td>
<td>Checksum</td>
</tr>
<tr>
<td>22</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>

Table Navigation Status

<table>
<thead>
<tr>
<th>Navigation Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>No Fix</td>
</tr>
<tr>
<td>DR</td>
<td>Dead reckoning only solution</td>
</tr>
<tr>
<td>G2</td>
<td>Stand alone 2D solution</td>
</tr>
<tr>
<td>G3</td>
<td>Stand alone 3D solution</td>
</tr>
<tr>
<td>D2</td>
<td>Differential 2D solution</td>
</tr>
<tr>
<td>D3</td>
<td>Differential 3D solution</td>
</tr>
<tr>
<td>RK</td>
<td>Combined GPS + dead reckoning solution</td>
</tr>
<tr>
<td>TT</td>
<td>Time only solution</td>
</tr>
</tbody>
</table>
23.3 RATE (PUBX,40)

23.3.1 Set NMEA message output rate

<table>
<thead>
<tr>
<th>Message</th>
<th>RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Set NMEA message output rate</td>
</tr>
</tbody>
</table>

Firmware

- Supported on:
 - u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

- Set Message

Comment

- Set/Get message rate configuration(s) to/from the receiver.
- Send rate is relative to the event a message is registered on. For example, if the rate of a navigation message is set to 2, the message is sent every second navigation solution.

Message Info

<table>
<thead>
<tr>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF1 0x40</td>
<td>11</td>
</tr>
</tbody>
</table>

Message Structure:

```
$PUBX,40,msgId,rddc,rus1,rus2,rusb,rspi,reserved*cs<CR><LF>
```

Example:

```
$PUBX,40,GLL,1,0,0,0,0,0,0*5D
```

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$PUBX</td>
<td>-</td>
<td>string</td>
<td>$PUBX</td>
<td>Message ID, UBX protocol header, proprietary sentence</td>
</tr>
<tr>
<td>1</td>
<td>ID</td>
<td>-</td>
<td>numeric</td>
<td>40</td>
<td>Proprietary message identifier</td>
</tr>
<tr>
<td>2</td>
<td>msgId</td>
<td>-</td>
<td>string</td>
<td>GLL</td>
<td>NMEA message identifier</td>
</tr>
<tr>
<td>3</td>
<td>rddc</td>
<td>cycl</td>
<td>numeric</td>
<td>1</td>
<td>output rate on DDC 0 disables that message from being output on this port 1 means that this message is output every epoch</td>
</tr>
<tr>
<td>4</td>
<td>rus1</td>
<td>cycl</td>
<td>numeric</td>
<td>1</td>
<td>output rate on USART 1 0 disables that message from being output on this port 1 means that this message is output every epoch</td>
</tr>
<tr>
<td>5</td>
<td>rus2</td>
<td>cycl</td>
<td>numeric</td>
<td>1</td>
<td>output rate on USART 2 0 disables that message from being output on this port 1 means that this message is output every epoch</td>
</tr>
<tr>
<td>6</td>
<td>rusb</td>
<td>cycl</td>
<td>numeric</td>
<td>1</td>
<td>output rate on USB 0 disables that message from being output on this port 1 means that this message is output every epoch</td>
</tr>
<tr>
<td>7</td>
<td>rspi</td>
<td>cycl</td>
<td>numeric</td>
<td>1</td>
<td>output rate on SPI 0 disables that message from being output on this port 1 means that this message is output every epoch</td>
</tr>
<tr>
<td>8</td>
<td>reserved</td>
<td>-</td>
<td>numeric</td>
<td>0</td>
<td>Reserved: always fill with 0</td>
</tr>
<tr>
<td>9</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*5D</td>
<td>Checksum</td>
</tr>
<tr>
<td>10</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>
23.4 SVSTATUS (PUBX,03)

23.4.1 Poll a PUBX,03 message

Message	SVSTATUS
Description | Poll a PUBX,03 message
Firmware | Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00
Type | Input Message
Comment | A PUBX,03 message is polled by sending the PUBX,03 message without any data fields.

Message Info

<table>
<thead>
<tr>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF1 0x03</td>
<td>4</td>
</tr>
</tbody>
</table>

Message Structure:

$$PUBX,03*30<CR><LF>$$

Example:

$$PUBX,03*30$$

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$PUBX</td>
<td>-</td>
<td>string</td>
<td>$PUBX</td>
<td>Message ID, UBX protocol header, proprietary sentence</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>numeric</td>
<td>03</td>
<td></td>
<td>Set to 03 to poll a PUBX,03 message</td>
</tr>
<tr>
<td>2</td>
<td>cs</td>
<td>hexadec</td>
<td>*30</td>
<td></td>
<td>Checksum</td>
</tr>
<tr>
<td>3</td>
<td><CR><LF></td>
<td>character</td>
<td>-</td>
<td></td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>

23.4.2 Satellite Status

Message	SVSTATUS
Description | Satellite Status
Firmware | Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00
Type | Output Message
Comment | The PUBX,03 message contains satellite status information.

Message Info

<table>
<thead>
<tr>
<th>ID for CFG-MSG</th>
<th>Number of fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xF1 0x03</td>
<td>5 + 6*n</td>
</tr>
</tbody>
</table>

Message Structure:

$$PUBX,03,GT{,sv,s,az,el,cno,lck},*cs<CR><LF>$$

Example:

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$PUBX</td>
<td>-</td>
<td>string</td>
<td>$PUBX</td>
<td>Message ID, UBX protocol header, proprietary sentence</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>numeric</td>
<td>03</td>
<td></td>
<td>Proprietary message identifier: 03</td>
</tr>
<tr>
<td>2</td>
<td>n</td>
<td>numeric</td>
<td>11</td>
<td></td>
<td>Number of GPS satellites tracked</td>
</tr>
</tbody>
</table>

Start of repeated block (n times)
SVSTATUS continued

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 + 6*N</td>
<td>sv</td>
<td>-</td>
<td>numeric</td>
<td>23</td>
<td>Satellite ID</td>
</tr>
<tr>
<td>4 + 6*N</td>
<td>s</td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Satellite status, see table below</td>
</tr>
<tr>
<td>5 + 6*N</td>
<td>az</td>
<td>deg</td>
<td>numeric</td>
<td>-</td>
<td>Satellite azimuth (range: 0-359)</td>
</tr>
<tr>
<td>6 + 6*N</td>
<td>el</td>
<td>deg</td>
<td>numeric</td>
<td>-</td>
<td>Satellite elevation (range: 0-90)</td>
</tr>
<tr>
<td>7 + 6*N</td>
<td>cno</td>
<td>dBHz</td>
<td>numeric</td>
<td>45</td>
<td>Signal strength (C/N0, range 0-99), blank when not tracking</td>
</tr>
<tr>
<td>8 + 6*N</td>
<td>lck</td>
<td>s</td>
<td>numeric</td>
<td>010</td>
<td>Satellite carrier lock time (range: 0-64) 0: code lock only 64: lock for 64 seconds or more</td>
</tr>
</tbody>
</table>

End of repeated block

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 + 6*n</td>
<td>cs</td>
<td>-</td>
<td>hexadecimal</td>
<td>*0D</td>
<td>Checksum</td>
</tr>
<tr>
<td>4 + 6*n</td>
<td><CR><LF></td>
<td>-</td>
<td>character</td>
<td>-</td>
<td>Carriage return and line feed</td>
</tr>
</tbody>
</table>

Table Satellite Status

<table>
<thead>
<tr>
<th>Satellite Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Not used</td>
</tr>
<tr>
<td>U</td>
<td>Used in solution</td>
</tr>
<tr>
<td>e</td>
<td>Ephemeris available, but not used for navigation</td>
</tr>
</tbody>
</table>

23.5 TIME (PUBX,04)

23.5.1 Poll a PUBX,04 message

<table>
<thead>
<tr>
<th>Message</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll a PUBX,04 message</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input Message</td>
</tr>
<tr>
<td>Comment</td>
<td>A PUBX,04 message is polled by sending the PUBX,04 message without any data fields.</td>
</tr>
<tr>
<td>Message Info</td>
<td>ID for CFG-MSG</td>
</tr>
<tr>
<td></td>
<td>0xF1 0x04</td>
</tr>
</tbody>
</table>

Message Structure:

$PUBX,04*37<CR><LF>

Example:

$PUBX,04*37

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$PUBX</td>
<td>-</td>
<td>string</td>
<td>$PUBX</td>
<td>Message ID, UBX protocol header, proprietary sentence</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>-</td>
<td>numeric</td>
<td>04</td>
<td>Set to 04 to poll a PUBX,04 message</td>
</tr>
</tbody>
</table>
23.5.2 Time of Day and Clock Information

Message
TIME

Description
Time of Day and Clock Information

Firmware
Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type
Output Message

<table>
<thead>
<tr>
<th>Field No.</th>
<th>Name</th>
<th>Unit</th>
<th>Format</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$PUBX</td>
<td>-</td>
<td>string</td>
<td>$PUBX</td>
<td>Message ID, UBX protocol header, proprietary sentence</td>
</tr>
<tr>
<td>1</td>
<td>msgId</td>
<td>-</td>
<td>numeric</td>
<td>04</td>
<td>Proprietary message identifier: 04</td>
</tr>
<tr>
<td>2</td>
<td>time</td>
<td>-</td>
<td>hhmss.ss</td>
<td>073731.00</td>
<td>UTC time, see note on UTC representation</td>
</tr>
<tr>
<td>3</td>
<td>date</td>
<td>-</td>
<td>ddmmyy</td>
<td>091202</td>
<td>UTC date, day, month, year format, see note on UTC representation</td>
</tr>
<tr>
<td>4</td>
<td>utcTow</td>
<td>s</td>
<td>numeric</td>
<td>113851.00</td>
<td>UTC Time of Week</td>
</tr>
<tr>
<td>5</td>
<td>utcWk</td>
<td>-</td>
<td>numeric</td>
<td>1196</td>
<td>UTC week number, continues beyond 1023</td>
</tr>
</tbody>
</table>
| 6 | leapSec | s | numeric/text | 15D | Leap seconds
The number is marked with a ‘D’ if the value is the firmware default value. If the value is not marked it has been received from a satellite. |
| 7 | clkBias | ns | numeric | 1930035 | Receiver clock bias |
| 8 | clkDrift | ns/s | numeric | -2660.664 | Receiver clock drift |
| 9 | tpGran | ns | numeric | 43 | Time Pulse Granularity, The quantization error of the TIMEPULSE pin |
| 10 | cs | - | hexadecimal | *3C | Checksum |
| 11 | <CR><LF> | - | character | - | Carriage Return and Line Feed |
UBX Protocol

24 UBX Protocol Key Features

u-blox GNSS receivers use a u-blox proprietary protocol to transmit GNSS data to a host computer. This protocol has the following key features:

- Compact - uses 8 Bit Binary Data.
- Checksum Protected - uses a low-overhead checksum algorithm
- Modular - uses a 2-stage message identifier (Class- and Message ID)

25 UBX Packet Structure

A basic UBX Packet looks as follows:

<table>
<thead>
<tr>
<th>SYNCH</th>
<th>SYNCH</th>
<th>CLASS</th>
<th>LENGTH</th>
<th>ID</th>
<th>CK_A</th>
<th>CK_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1</td>
<td>CH 2</td>
<td>1 Byte</td>
<td>Length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class</td>
<td>Little Endian</td>
<td></td>
<td>Payload size depending on LENGTH and/or Class, ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Byte</td>
<td>Message ID</td>
<td></td>
<td>2 Bytes Checksum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Every Message starts with 2 Bytes: 0xB5 0x62
- A 1 Byte Class Field follows. The Class defines the basic subset of the message
- A 1 Byte ID Field defines the message that is to follow
- A 2 Byte Length Field is following. Length is defined as being the length of the payload, only. It does not include Sync Chars, Class, ID or CRC fields. The number format of the length field is an unsigned 16-Bit integer in Little Endian Format.
- The Payload is a variable length field.
- CK_A and CK_B is a 16 Bit checksum whose calculation is defined below.

26 UBX Payload Definition Rules

26.1 Structure Packing

Values are placed in an order that structure packing is not a problem. This means that 2 byte values shall start on offsets which are a multiple of 2, 4 byte values shall start at a multiple of 4, and so on.

26.2 Message Naming

Referring to messages is done by adding the class name and a dash in front of the message name. For example, the ECEF-Message is referred to as NAV-POSECEF. Referring to values is done by adding a dash and the name, e.g. NAV-POSECEF-X
26.3 Number Formats

All multi-byte values are ordered in Little Endian format, unless otherwise indicated.

All floating point values are transmitted in IEEE754 single or double precision. A technical description of the IEEE754 format can be found in the AnswerBook from the ADS1.x toolkit.

Variable Type Definitions

<table>
<thead>
<tr>
<th>Short Type</th>
<th>Size (Bytes)</th>
<th>Comment</th>
<th>Min/Max</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>1</td>
<td></td>
<td>0..255</td>
<td>1</td>
</tr>
<tr>
<td>I1</td>
<td>1</td>
<td>2’s complement</td>
<td>-128..127</td>
<td>1</td>
</tr>
<tr>
<td>X1</td>
<td>1</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>U2</td>
<td>2</td>
<td></td>
<td>0..65535</td>
<td>1</td>
</tr>
<tr>
<td>I2</td>
<td>2</td>
<td>2’s complement</td>
<td>-32768..32767</td>
<td>1</td>
</tr>
<tr>
<td>X2</td>
<td>2</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>U4</td>
<td>4</td>
<td></td>
<td>0.4 ’294’967’295</td>
<td>1</td>
</tr>
<tr>
<td>I4</td>
<td>4</td>
<td>2’s complement</td>
<td>-2’147’483’648..2’147’483’647</td>
<td>1</td>
</tr>
<tr>
<td>X4</td>
<td>4</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>R4</td>
<td>4</td>
<td></td>
<td>-1*2^+127..2^+127</td>
<td>~ Value * 2^-24</td>
</tr>
<tr>
<td>R8</td>
<td>8</td>
<td></td>
<td>-1*2^+1023..2^+1023</td>
<td>~ Value * 2^-53</td>
</tr>
<tr>
<td>CH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27 UBX Checksum

The checksum is calculated over the packet, starting and including the CLASS field, up until, but excluding, the Checksum Field:

The checksum algorithm used is the 8-Bit Fletcher Algorithm, which is used in the TCP standard ([RFC 1145](https://tools.ietf.org/html/rfc1145)). This algorithm works as follows:

Buffer[N] contains the data over which the checksum is to be calculated.

The two CK values are 8-Bit unsigned integers, only! If implementing with larger-sized integer values, make sure to mask both CK_A and CK_B with 0xFF after both operations in the loop.

```c
CK_A = 0, CK_B = 0
For(I=0;I<N;I++)
{
    CK_A = CK_A + Buffer[I]
    CK_B = CK_B + CK_A
}
```

After the loop, the two U1 values contain the checksum, transmitted at the end of the packet.
28 UBX Message Flow

There are certain features associated with the messages being sent back and forth:

28.1 Acknowledgement

When messages from the class CFG are sent to the receiver, the receiver will send an "acknowledge" (ACK-ACK) or a "not acknowledge" (ACK-NAK) message back to the sender, depending on whether or not the message was processed correctly.

Some messages from other classes (e.g. LOG) also use the same acknowledgement mechanism.

28.2 Polling Mechanism

All messages that are output by the receiver in a periodic manner (i.e. messages in classes MON, NAV and RXM) can also be polled.

There is not a single specific message which polls any other message. The UBX protocol was designed such, that when sending a message with no payload (or just a single parameter which identifies the poll request) the message is polled.

29 UBX Class IDs

A class is a grouping of messages which are related to each other. The following table lists all the current message classes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAV</td>
<td>0x01</td>
<td>Navigation Results: Position, Speed, Time, Acc, Heading, DOP, SVs used</td>
</tr>
<tr>
<td>RXM</td>
<td>0x02</td>
<td>Receiver Manager Messages: Satellite Status, RTC Status</td>
</tr>
<tr>
<td>INF</td>
<td>0x04</td>
<td>Information Messages: Printf-Style Messages, with IDs such as Error, Warning, Notice</td>
</tr>
<tr>
<td>ACK</td>
<td>0x05</td>
<td>Ack/Nack Messages: as replies to CFG Input Messages</td>
</tr>
<tr>
<td>CFG</td>
<td>0x06</td>
<td>Configuration Input Messages: Set Dynamic Model, Set DOP Mask, Set Baud Rate, etc.</td>
</tr>
<tr>
<td>MON</td>
<td>0x0A</td>
<td>Monitoring Messages: Communication Status, CPU Load, Stack Usage, Task Status</td>
</tr>
<tr>
<td>AID</td>
<td>0x0B</td>
<td>AssistNow Aiding Messages: Ephemeris, Almanac, other A-GPS data input</td>
</tr>
<tr>
<td>TIM</td>
<td>0x0D</td>
<td>Timing Messages: Time Pulse Output, Timemark Results</td>
</tr>
</tbody>
</table>

All remaining class IDs are reserved.
30 UBX Messages Overview

<table>
<thead>
<tr>
<th>Page</th>
<th>Mnemonic</th>
<th>Cls/ID</th>
<th>Length</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>ACK-ACK</td>
<td>0x05 0x01</td>
<td>2</td>
<td>Output</td>
<td>Message Acknowledged</td>
</tr>
<tr>
<td>72</td>
<td>ACK-NAK</td>
<td>0x05 0x00</td>
<td>2</td>
<td>Output</td>
<td>Message Not-Acknowledged</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UBX Class AID</td>
</tr>
<tr>
<td>73</td>
<td>AID-ALM</td>
<td>0x08 0x30</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll GPS Aiding Almanac Data</td>
</tr>
<tr>
<td>73</td>
<td>AID-ALM</td>
<td>0x08 0x30</td>
<td>4</td>
<td>Input/Output</td>
<td>GPS Aiding Almanac Input/Output Message</td>
</tr>
<tr>
<td>74</td>
<td>AID-ALPSRV</td>
<td>0x08 0x32</td>
<td>16</td>
<td>Output</td>
<td>ALP client requests AlmanacPlus Message from server</td>
</tr>
<tr>
<td>75</td>
<td>AID-ALPSRV</td>
<td>0x08 0x32</td>
<td>16 + 1*dataSize</td>
<td>Input</td>
<td>ALP server sends AlmanacPlus data to client</td>
</tr>
<tr>
<td>76</td>
<td>AID-ALPSRV</td>
<td>0x08 0x32</td>
<td>8 + 2*size</td>
<td>Output</td>
<td>ALP client sends AlmanacPlus data to server.</td>
</tr>
<tr>
<td>77</td>
<td>AID-ALP</td>
<td>0x08 0x50</td>
<td>0 + 2*N</td>
<td>Input</td>
<td>ALP file data transfer to the receiver</td>
</tr>
<tr>
<td>77</td>
<td>AID-ALP</td>
<td>0x08 0x50</td>
<td>1</td>
<td>Input</td>
<td>Mark end of data transfer</td>
</tr>
<tr>
<td>78</td>
<td>AID-ALP</td>
<td>0x08 0x50</td>
<td>1</td>
<td>Output</td>
<td>Acknowledges a data transfer</td>
</tr>
<tr>
<td>78</td>
<td>AID-ALP</td>
<td>0x08 0x50</td>
<td>1</td>
<td>Output</td>
<td>Indicate problems with a data transfer</td>
</tr>
<tr>
<td>79</td>
<td>AID-DATA</td>
<td>0x08 0x10</td>
<td>0</td>
<td>Poll Request</td>
<td>Polls all GPS Initial Aiding Data</td>
</tr>
<tr>
<td>79</td>
<td>AID-EPH</td>
<td>0x08 0x31</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll GPS Aiding Ephemeris Data</td>
</tr>
<tr>
<td>79</td>
<td>AID-EPH</td>
<td>0x08 0x31</td>
<td>1</td>
<td>Poll Request</td>
<td>Poll GPS Aiding Ephemeris Data for a SV</td>
</tr>
<tr>
<td>80</td>
<td>AID-EPH</td>
<td>0x08 0x31</td>
<td>(8) or (104)</td>
<td>Input/Output</td>
<td>GPS Aiding Ephemeris Input/Output Message</td>
</tr>
<tr>
<td>81</td>
<td>AID-HUI</td>
<td>0x08 0x02</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll GPS Health, UTC and ionosphere parameters</td>
</tr>
<tr>
<td>81</td>
<td>AID-HUI</td>
<td>0x08 0x02</td>
<td>72</td>
<td>Input/Output</td>
<td>GPS Health, UTC and ionosphere parameters</td>
</tr>
<tr>
<td>82</td>
<td>AID-INI</td>
<td>0x08 0x01</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll GPS Initial Aiding Data</td>
</tr>
<tr>
<td>83</td>
<td>AID-INI</td>
<td>0x08 0x01</td>
<td>48</td>
<td>Input/Output</td>
<td>Aiding position, time, frequency, clock drift</td>
</tr>
<tr>
<td>84</td>
<td>AID-REQ</td>
<td>0x08 0x00</td>
<td>0</td>
<td>Virtual</td>
<td>Sends a poll (AID-DATA) for all GPS Aiding Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UBX Class CFG</td>
</tr>
<tr>
<td>85</td>
<td>CFG-ANT</td>
<td>0x06 0x13</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll Antenna Control Settings</td>
</tr>
<tr>
<td>85</td>
<td>CFG-ANT</td>
<td>0x06 0x13</td>
<td>4</td>
<td>Input/Output</td>
<td>Antenna Control Settings</td>
</tr>
<tr>
<td>86</td>
<td>CFG-CFG</td>
<td>0x06 0x09</td>
<td>(12) or (13)</td>
<td>Command</td>
<td>Clear, Save and Load configurations</td>
</tr>
<tr>
<td>88</td>
<td>CFG-DAT</td>
<td>0x06 0x06</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll Datum Setting</td>
</tr>
<tr>
<td>88</td>
<td>CFG-DAT</td>
<td>0x06 0x06</td>
<td>44</td>
<td>Input</td>
<td>Set User-defined Datum</td>
</tr>
<tr>
<td>89</td>
<td>CFG-DAT</td>
<td>0x06 0x06</td>
<td>52</td>
<td>Output</td>
<td>The currently defined Datum</td>
</tr>
<tr>
<td>90</td>
<td>CFG-GNSS</td>
<td>0x06 0x3E</td>
<td>0</td>
<td>Poll Request</td>
<td>Polls the configuration of the GNSS system configuration</td>
</tr>
<tr>
<td>90</td>
<td>CFG-GNSS</td>
<td>0x06 0x3E</td>
<td>4 + 8*numConfigBlocks</td>
<td>Output</td>
<td>GNSS system configuration</td>
</tr>
<tr>
<td>91</td>
<td>CFG-INF</td>
<td>0x06 0x02</td>
<td>1</td>
<td>Poll Request</td>
<td>Poll INF message configuration for one protocol</td>
</tr>
<tr>
<td>92</td>
<td>CFG-INF</td>
<td>0x06 0x02</td>
<td>0 + 10*N</td>
<td>Input/Output</td>
<td>Information message configuration</td>
</tr>
<tr>
<td>93</td>
<td>CFG-ITFM</td>
<td>0x06 0x39</td>
<td>0</td>
<td>Poll Request</td>
<td>Polls the Jamming/Interference Monitor configuration.</td>
</tr>
<tr>
<td>93</td>
<td>CFG-ITFM</td>
<td>0x06 0x39</td>
<td>8</td>
<td>Command</td>
<td>Jamming/Interference Monitor configuration.</td>
</tr>
</tbody>
</table>
UBX Messages Overview continued

<table>
<thead>
<tr>
<th>Page</th>
<th>Mnemonic</th>
<th>Cls/ID</th>
<th>Length</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>CFG-MSG</td>
<td>0x06 0x01</td>
<td>2</td>
<td>Poll Request</td>
<td>Poll a message configuration</td>
</tr>
<tr>
<td>94</td>
<td>CFG-MSG</td>
<td>0x06 0x01</td>
<td>8</td>
<td>Input/Output</td>
<td>Set Message Rate(s)</td>
</tr>
<tr>
<td>95</td>
<td>CFG-MSG</td>
<td>0x06 0x01</td>
<td>3</td>
<td>Input/Output</td>
<td>Set Message Rate</td>
</tr>
<tr>
<td>95</td>
<td>CFG-NAV5</td>
<td>0x06 0x24</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll Navigation Engine Settings</td>
</tr>
<tr>
<td>96</td>
<td>CFG-NAV5</td>
<td>0x06 0x24</td>
<td>36</td>
<td>Input/Output</td>
<td>Navigation Engine Settings</td>
</tr>
<tr>
<td>97</td>
<td>CFG-NAVXS</td>
<td>0x06 0x23</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll Navigation Engine Expert Settings</td>
</tr>
<tr>
<td>98</td>
<td>CFG-NAVXS</td>
<td>0x06 0x23</td>
<td>40</td>
<td>Input/Output</td>
<td>Navigation Engine Expert Settings</td>
</tr>
<tr>
<td>99</td>
<td>CFG-NMEA</td>
<td>0x06 0x17</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll the NMEA protocol configuration</td>
</tr>
<tr>
<td>100</td>
<td>CFG-NMEA</td>
<td>0x06 0x17</td>
<td>4</td>
<td>Input/Output</td>
<td>NMEA protocol configuration (deprecated)</td>
</tr>
<tr>
<td>101</td>
<td>CFG-NMEA</td>
<td>0x06 0x17</td>
<td>12</td>
<td>Input/Output</td>
<td>NMEA protocol configuration</td>
</tr>
<tr>
<td>103</td>
<td>CFG-NVS</td>
<td>0x06 0x22</td>
<td>13</td>
<td>Command</td>
<td>Clear, Save and Load non-volatile storage data</td>
</tr>
<tr>
<td>105</td>
<td>CFG-PM2</td>
<td>0x06 0x38</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll extended Power Management configuration</td>
</tr>
<tr>
<td>105</td>
<td>CFG-PM2</td>
<td>0x06 0x38</td>
<td>44</td>
<td>Input/Output</td>
<td>Extended Power Management configuration</td>
</tr>
<tr>
<td>107</td>
<td>CFG-PRT</td>
<td>0x06 0x00</td>
<td>0</td>
<td>Poll Request</td>
<td>Pull the configuration of the used I/O Port</td>
</tr>
<tr>
<td>107</td>
<td>CFG-PRT</td>
<td>0x06 0x00</td>
<td>1</td>
<td>Poll Request</td>
<td>Pulls the configuration for one I/O Port</td>
</tr>
<tr>
<td>107</td>
<td>CFG-PRT</td>
<td>0x06 0x00</td>
<td>20</td>
<td>Input/Output</td>
<td>Port Configuration for UART</td>
</tr>
<tr>
<td>110</td>
<td>CFG-PRT</td>
<td>0x06 0x00</td>
<td>20</td>
<td>Input/Output</td>
<td>Port Configuration for USB Port</td>
</tr>
<tr>
<td>111</td>
<td>CFG-PRT</td>
<td>0x06 0x00</td>
<td>20</td>
<td>Input/Output</td>
<td>Port Configuration for SPI Port</td>
</tr>
<tr>
<td>114</td>
<td>CFG-PRT</td>
<td>0x06 0x00</td>
<td>20</td>
<td>Input/Output</td>
<td>Port Configuration for DDC Port</td>
</tr>
<tr>
<td>116</td>
<td>CFG-RATE</td>
<td>0x06 0x08</td>
<td>0</td>
<td>Poll Request</td>
<td>Pull Navigation/Measurement Rate Settings</td>
</tr>
<tr>
<td>116</td>
<td>CFG-RATE</td>
<td>0x06 0x08</td>
<td>6</td>
<td>Input/Output</td>
<td>Navigation/Measurement Rate Settings</td>
</tr>
<tr>
<td>117</td>
<td>CFG-RINV</td>
<td>0x06 0x34</td>
<td>0</td>
<td>Poll Request</td>
<td>Pull contents of Remote Inventory</td>
</tr>
<tr>
<td>117</td>
<td>CFG-RINV</td>
<td>0x06 0x34</td>
<td>1 + 1*N</td>
<td>Input/Output</td>
<td>Contents of Remote Inventory</td>
</tr>
<tr>
<td>118</td>
<td>CFG-RST</td>
<td>0x06 0x04</td>
<td>4</td>
<td>Command</td>
<td>Reset Receiver / Clear Backup Data Structures</td>
</tr>
<tr>
<td>119</td>
<td>CFG-RXM</td>
<td>0x06 0x11</td>
<td>0</td>
<td>Poll Request</td>
<td>Pull RXM configuration</td>
</tr>
<tr>
<td>119</td>
<td>CFG-RXM</td>
<td>0x06 0x11</td>
<td>2</td>
<td>Input/Output</td>
<td>RXM configuration</td>
</tr>
<tr>
<td>120</td>
<td>CFG-SBAS</td>
<td>0x06 0x16</td>
<td>0</td>
<td>Poll Request</td>
<td>Pull contents of SBAS Configuration</td>
</tr>
<tr>
<td>120</td>
<td>CFG-SBAS</td>
<td>0x06 0x16</td>
<td>8</td>
<td>Input/Output</td>
<td>SBAS Configuration</td>
</tr>
<tr>
<td>122</td>
<td>CFG-TPS</td>
<td>0x06 0x31</td>
<td>0</td>
<td>Poll Request</td>
<td>Pull Time Pulse Parameters</td>
</tr>
<tr>
<td>122</td>
<td>CFG-TPS</td>
<td>0x06 0x31</td>
<td>1</td>
<td>Poll Request</td>
<td>Pull Time Pulse Parameters</td>
</tr>
<tr>
<td>122</td>
<td>CFG-TPS</td>
<td>0x06 0x31</td>
<td>32</td>
<td>Input/Output</td>
<td>Time Pulse Parameters</td>
</tr>
<tr>
<td>124</td>
<td>CFG-USB</td>
<td>0x06 0x18</td>
<td>0</td>
<td>Poll Request</td>
<td>Pull a USB configuration</td>
</tr>
<tr>
<td>124</td>
<td>CFG-USB</td>
<td>0x06 0x18</td>
<td>108</td>
<td>Input/Output</td>
<td>USB Configuration</td>
</tr>
</tbody>
</table>

UBX Class INF

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Cls/ID</th>
<th>Length</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF-DEBUG</td>
<td>0x04 0x04</td>
<td>0 + 1*N</td>
<td>Output</td>
<td>ASCII String output, indicating debug output</td>
</tr>
<tr>
<td>INF-ERROR</td>
<td>0x04 0x00</td>
<td>0 + 1*N</td>
<td>Output</td>
<td>ASCII String output, indicating an error</td>
</tr>
<tr>
<td>INF-NOTICE</td>
<td>0x04 0x02</td>
<td>0 + 1*N</td>
<td>Output</td>
<td>ASCII String output, with informational contents</td>
</tr>
<tr>
<td>INF-TEST</td>
<td>0x04 0x03</td>
<td>0 + 1*N</td>
<td>Output</td>
<td>ASCII String output, indicating test output</td>
</tr>
</tbody>
</table>
UBX Messages Overview continued

<table>
<thead>
<tr>
<th>Page</th>
<th>Mnemonic</th>
<th>Cls/ID</th>
<th>Length</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>INF-WARNING</td>
<td>0x04 0x01</td>
<td>0 + 1*N</td>
<td>Output</td>
<td>ASCII String output, indicating a warning</td>
</tr>
</tbody>
</table>

UBX Class MON
Monitoring Messages

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>MON-HW2</td>
<td>0x0A 0x08</td>
<td>28</td>
<td>Periodic/Polled</td>
<td>Extended Hardware Status</td>
</tr>
<tr>
<td>130</td>
<td>MON-HW</td>
<td>0x0A 0x09</td>
<td>68</td>
<td>Periodic/Polled</td>
<td>Hardware Status</td>
</tr>
<tr>
<td>131</td>
<td>MON-IO</td>
<td>0x0A 0x02</td>
<td>0 + 20*N</td>
<td>Periodic/Polled</td>
<td>I/O Subsystem Status</td>
</tr>
<tr>
<td>132</td>
<td>MON-MSGPP</td>
<td>0x0A 0x06</td>
<td>120</td>
<td>Periodic/Polled</td>
<td>Message Parse and Process Status</td>
</tr>
<tr>
<td>133</td>
<td>MON-RXBUF</td>
<td>0x0A 0x07</td>
<td>24</td>
<td>Periodic/Polled</td>
<td>Receiver Buffer Status</td>
</tr>
<tr>
<td>133</td>
<td>MON-RXR</td>
<td>0x0A 0x21</td>
<td>1</td>
<td>Output</td>
<td>Receiver Status Information</td>
</tr>
<tr>
<td>134</td>
<td>MON-TXBUF</td>
<td>0x0A 0x08</td>
<td>28</td>
<td>Periodic/Polled</td>
<td>Transmitter Buffer Status</td>
</tr>
<tr>
<td>135</td>
<td>MON-VER</td>
<td>0x0A 0x04</td>
<td>0</td>
<td>Poll Request</td>
<td>Poll Receiver/Software Version</td>
</tr>
<tr>
<td></td>
<td>MON-VER</td>
<td>0x0A 0x04</td>
<td>40 + 30*N</td>
<td>Answer to Poll</td>
<td>Receiver/Software Version</td>
</tr>
</tbody>
</table>

UBX Class NAV
Navigation Results

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>NAV-CLOCK</td>
<td>0x01 0x22</td>
<td>20</td>
<td>Periodic/Polled</td>
<td>Clock Solution</td>
</tr>
<tr>
<td>136</td>
<td>NAV-DGPS</td>
<td>0x01 0x31</td>
<td>16 + 12*numCh</td>
<td>Periodic/Polled</td>
<td>DGPS Data Used for NAV</td>
</tr>
<tr>
<td>137</td>
<td>NAV-DOP</td>
<td>0x01 0x04</td>
<td>18</td>
<td>Periodic/Polled</td>
<td>Dilution of precision</td>
</tr>
<tr>
<td>138</td>
<td>NAV-POSECEF</td>
<td>0x01 0x01</td>
<td>20</td>
<td>Periodic/Polled</td>
<td>Position Solution in ECEF</td>
</tr>
<tr>
<td>138</td>
<td>NAV-POSLLH</td>
<td>0x01 0x02</td>
<td>28</td>
<td>Periodic/Polled</td>
<td>Geodetic Position Solution</td>
</tr>
<tr>
<td>139</td>
<td>NAV-PVT</td>
<td>0x01 0x07</td>
<td>84</td>
<td>Periodic/Polled</td>
<td>Navigation Position Velocity Time Solution</td>
</tr>
<tr>
<td>141</td>
<td>NAV-SBAS</td>
<td>0x01 0x32</td>
<td>12 + 12*cnt</td>
<td>Periodic/Polled</td>
<td>SBAS Status Data</td>
</tr>
<tr>
<td>142</td>
<td>NAV-SOL</td>
<td>0x01 0x06</td>
<td>52</td>
<td>Periodic/Polled</td>
<td>Receiver Navigation Status</td>
</tr>
<tr>
<td>146</td>
<td>NAV-SVINFO</td>
<td>0x01 0x30</td>
<td>8 + 12*numCh</td>
<td>Periodic/Polled</td>
<td>Space Vehicle Information</td>
</tr>
<tr>
<td>148</td>
<td>NAV-TIMEGPS</td>
<td>0x01 0x20</td>
<td>16</td>
<td>Periodic/Polled</td>
<td>GPS Time Solution</td>
</tr>
<tr>
<td>149</td>
<td>NAV-TIMEUTC</td>
<td>0x01 0x21</td>
<td>20</td>
<td>Periodic/Polled</td>
<td>UTC Time Solution</td>
</tr>
<tr>
<td>150</td>
<td>NAV-VELECEF</td>
<td>0x01 0x11</td>
<td>20</td>
<td>Periodic/Polled</td>
<td>Velocity Solution in ECEF</td>
</tr>
<tr>
<td>150</td>
<td>NAV-VELNED</td>
<td>0x01 0x12</td>
<td>36</td>
<td>Periodic/Polled</td>
<td>Velocity Solution in NED</td>
</tr>
</tbody>
</table>

UBX Class RXM
Receiver Manager Messages

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>RMX-PMREQ</td>
<td>0x02 0x41</td>
<td>8</td>
<td>Command</td>
<td>Requests a Power Management task</td>
</tr>
<tr>
<td>152</td>
<td>RMX-SVSI</td>
<td>0x02 0x20</td>
<td>8 + 6*numSV</td>
<td>Periodic/Polled</td>
<td>SV Status Info</td>
</tr>
</tbody>
</table>

UBX Class TIM
Timing Messages

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>TIM-TM2</td>
<td>0x0D 0x03</td>
<td>28</td>
<td>Periodic/Polled</td>
<td>Time mark data</td>
</tr>
<tr>
<td>155</td>
<td>TIM-TP</td>
<td>0x0D 0x01</td>
<td>16</td>
<td>Periodic/Polled</td>
<td>Time Pulse Timedata</td>
</tr>
<tr>
<td>156</td>
<td>TIM-VRFY</td>
<td>0x0D 0x06</td>
<td>20</td>
<td>Polled/Once</td>
<td>Sourced Time Verification</td>
</tr>
</tbody>
</table>
31 ACK (0x05)

Ack/Nack Messages: i.e. as replies to CFG Input Messages.
Messages in this class are sent as a result of a CFG message being received, decoded and processed by the receiver.

31.1 ACK-ACK (0x05 0x01)

31.1.1 Message Acknowledged

<table>
<thead>
<tr>
<th>Message</th>
<th>ACK-ACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Message Acknowledged</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output</td>
</tr>
<tr>
<td>Comment</td>
<td>Output upon processing of an input message</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x05 0x01</td>
<td>2</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>clsID</td>
<td>-</td>
<td>Class ID of the Acknowledged Message</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>msgID</td>
<td>-</td>
<td>Message ID of the Acknowledged Message</td>
</tr>
</tbody>
</table>

31.2 ACK-NAK (0x05 0x00)

31.2.1 Message Not-Acknowledged

<table>
<thead>
<tr>
<th>Message</th>
<th>ACK-NAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Message Not-Acknowledged</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output</td>
</tr>
<tr>
<td>Comment</td>
<td>Output upon processing of an input message</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x05 0x00</td>
<td>2</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>clsID</td>
<td>-</td>
<td>Class ID of the Not-Acknowledged Message</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>msgID</td>
<td>-</td>
<td>Message ID of the Not-Acknowledged Message</td>
</tr>
</tbody>
</table>
32 AID (0x0B)

AssistNow Aiding Messages: i.e. Ephemeris, Almanac, other A-GPS data input. Messages in this class are used to send aiding data to the receiver.

32.1 AID-ALM (0x0B 0x30)

32.1.1 Poll GPS Aiding Almanac Data

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-ALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll GPS Aiding Almanac Data</td>
</tr>
</tbody>
</table>
| **Firmware** | Supported on:
 - u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| **Type** | Poll Request |
| **Comment** | This message has an empty payload! |
| Poll GPS Aiding Data (Almanac) for all 32 SVs by sending this message to the receiver without any payload. The receiver will return 32 messages of type AID-ALM as defined below. |

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5 0x62</td>
<td>0x0B 0x30</td>
<td>0</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload

32.1.2 Poll GPS Aiding Almanac Data for a SV

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-ALM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll GPS Aiding Almanac Data for a SV</td>
</tr>
</tbody>
</table>
| **Firmware** | Supported on:
 - u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| **Type** | Poll Request |
| **Comment** | Poll GPS Aiding Data (Almanac) for an SV by sending this message to the receiver. The receiver will return one message of type AID-ALM as defined below. |

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5 0x62</td>
<td>0x0B 0x30</td>
<td>1</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>svid</td>
<td>-</td>
<td>SV ID for which the receiver shall return its Almanac Data (Valid Range: 1 .. 32 or 51, 56, 63).</td>
</tr>
</tbody>
</table>
32.1.3 GPS Aiding Almanac Input/Output Message

Message

AID-ALM

Description

GPS Aiding Almanac Input/Output Message

Firmware

Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

Input/Output

Comment

- If the WEEK Value is 0, DWRD0 to DWRD7 are not sent as the Almanac is not available for the given SV. This may happen even if NAV-SVINFO and RXM-SVSI are indicating almanac availability as the internal data may not represent the content of an original broadcast almanac (or only parts thereof).
- DWORD0 to DWORD7 contain the 8 words following the Hand-Over Word (HOW) from the GPS navigation message, either pages 1 to 24 of sub-frame 5 or pages 2 to 10 of subframe 4. See IS-GPS-200 for a full description of the contents of the Almanac pages.
- In DWORD0 to DWORD7, the parity bits have been removed, and the 24 bits of data are located in Bits 0 to 23. Bits 24 to 31 shall be ignored.
- Example: Parameter e (Eccentricity) from Almanac Subframe 4/5, Word 3, Bits 69-84 within the subframe can be found in DWRD0, Bits 15-0 whereas Bit 0 is the LSB.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x0B 0x30</td>
<td>(8) or (40)</td>
<td>see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>svid</td>
<td>-</td>
<td>SV ID for which this Almanac Data is (Valid Range: 1 .. 32 or 51, 56, 63).</td>
</tr>
<tr>
<td>4</td>
<td>U4</td>
<td>-</td>
<td>week</td>
<td>-</td>
<td>Issue Date of Almanac (GPS week number)</td>
</tr>
</tbody>
</table>

Start of optional block

8 U4[8] - dwr d - Almanac Words

End of optional block

32.2 AID-ALPSRV (0x0B 0x32)

32.2.1 ALP client requests AlmanacPlus data from server

Message

AID-ALPSRV

Description

ALP client requests AlmanacPlus data from server

Firmware

Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

Output

Comment

This message is sent by the ALP client to the ALP server in order to request data. The given identifier must be prepended to the requested data when submitting the data.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x0B 0x32</td>
<td>16</td>
<td>see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
</table>

GPS.G6-SW-12013 Public Release Page 74 of 168
32.2.2 ALP server sends AlmanacPlus data to client

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>AID-ALPSRV</td>
<td>0xB5</td>
<td>0x62</td>
<td>0x0B 0x32</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>idSize</td>
<td>bytes</td>
<td>Identifier size. This data, beginning at message start, must prepend the returned data.</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>type</td>
<td>-</td>
<td>Requested data type. Must be different from 0xff, otherwise this is not a data request.</td>
</tr>
<tr>
<td>2</td>
<td>U2</td>
<td>-</td>
<td>ofs</td>
<td>-</td>
<td>Requested data offset [16bit words]</td>
</tr>
<tr>
<td>4</td>
<td>U2</td>
<td>-</td>
<td>size</td>
<td>-</td>
<td>Requested data size [16bit words]</td>
</tr>
<tr>
<td>6</td>
<td>U2</td>
<td>-</td>
<td>fileId</td>
<td>-</td>
<td>Unused when requesting data, filled in when sending back the data</td>
</tr>
<tr>
<td>8</td>
<td>U2</td>
<td>-</td>
<td>dataSize</td>
<td>bytes</td>
<td>Actual data size. Unused when requesting data, filled in when sending back the data.</td>
</tr>
<tr>
<td>10</td>
<td>U1</td>
<td>-</td>
<td>id1</td>
<td>-</td>
<td>Identifier data</td>
</tr>
<tr>
<td>11</td>
<td>U1</td>
<td>-</td>
<td>id2</td>
<td>-</td>
<td>Identifier data</td>
</tr>
<tr>
<td>12</td>
<td>U4</td>
<td>-</td>
<td>id3</td>
<td>-</td>
<td>Identifier data</td>
</tr>
</tbody>
</table>

Start of repeated block (dataSize times)

16 + 1*N U1 - data - Data for the ALP client

End of repeated block
32.2.3 ALP client sends AlmanacPlus data to server.

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-ALPSRV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ALP client sends AlmanacPlus data to server.</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output</td>
</tr>
<tr>
<td>Comment</td>
<td>This message is sent by the ALP client to the ALP server in order to submit updated data. The server can either replace the current data at this position or ignore this new data (which will result in degraded performance).</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>idSize</td>
<td>bytes</td>
<td>Identifier size</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>type</td>
<td>-</td>
<td>Set to 0xff to mark that is not a data request</td>
</tr>
<tr>
<td>2</td>
<td>U2</td>
<td>-</td>
<td>ofs</td>
<td>-</td>
<td>Data offset [16bit words]</td>
</tr>
<tr>
<td>4</td>
<td>U2</td>
<td>-</td>
<td>size</td>
<td>-</td>
<td>Data size [16bit words]</td>
</tr>
<tr>
<td>6</td>
<td>U2</td>
<td>-</td>
<td>fileId</td>
<td>-</td>
<td>Corresponding ALP file id</td>
</tr>
</tbody>
</table>

Start of repeated block (size times)

| 8 + 2*N | U2 | - | data | - | 16bit word data to be submitted to the ALP server |

End of repeated block

32.3 AID-ALP (0x0B 0x50)

32.3.1 ALP file data transfer to the receiver

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-ALP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ALP file data transfer to the receiver</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input</td>
</tr>
<tr>
<td>Comment</td>
<td>This message is used to transfer a chunk of data from the AlmanacPlus file to the receiver. Upon reception of this message, the receiver will write the payload data to its internal non-volatile memory, eventually also erasing that part of the memory first. Make sure that the payload size is even sized (i.e. always a multiple of 2). Do not use payloads larger than ~ 700 bytes, as this would exceed the receiver’s internal buffering capabilities. The receiver will (not-) acknowledge this message using the message alternatives given below. The host shall wait for an acknowledge message before sending the next chunk.</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N*2</td>
<td>U2</td>
<td>-</td>
<td>alpData</td>
<td>-</td>
<td>ALP file data</td>
</tr>
</tbody>
</table>
32.3.2 Mark end of data transfer

Message	AID-ALP
Description | Mark end of data transfer
Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00
Type | Input
Comment | This message is used to indicate that all chunks have been transferred, and normal receiver operation can resume. Upon reception of this message, the receiver will verify all chunks received so far, and enable AssistNow Offline and GPS receiver operation if successful. This message could also be sent to cancel an incomplete download.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x08 0x50</td>
<td>1</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>dummy</td>
<td>-</td>
<td>Value is ignored</td>
</tr>
</tbody>
</table>

32.3.3 Acknowledges a data transfer

Message	AID-ALP
Description | Acknowledges a data transfer
Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00
Type | Output
Comment | This message from the receiver acknowledges successful processing of a previously received chunk of data with the “Chunk Transfer” Message. This message will also be sent once a “Stop” message has been received, and the integrity of all chunks received so far has been checked successfully.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x08 0x50</td>
<td>1</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>ack</td>
<td>-</td>
<td>Set to 0x01</td>
</tr>
</tbody>
</table>
32.3.4 Indicate problems with a data transfer

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-ALP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Indicate problems with a data transfer</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Output |
| Comment | This message from the receiver indicates that an error has occurred while processing and storing the data received with the “Chunk Transfer” message. This message will also be sent once a stop command has been received, and the integrity of all chunks received failed. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x0B 0x50</td>
<td>1</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>nak</td>
<td>-</td>
<td>Set to 0x00</td>
</tr>
</tbody>
</table>

32.3.5 Poll the AlmanacPlus status

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-ALP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll the AlmanacPlus status</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Periodic/Pollled |
| Comment | - |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x0B 0x50</td>
<td>24</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>predTow</td>
<td>s</td>
<td>Prediction start time of week</td>
</tr>
<tr>
<td>4</td>
<td>U4</td>
<td>-</td>
<td>predDur</td>
<td>s</td>
<td>Prediction duration from start of first data set to end of last data set</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>age</td>
<td>s</td>
<td>Current age of ALP data</td>
</tr>
<tr>
<td>12</td>
<td>U2</td>
<td>-</td>
<td>predWno</td>
<td>-</td>
<td>Prediction start week number</td>
</tr>
<tr>
<td>14</td>
<td>U2</td>
<td>-</td>
<td>almWno</td>
<td>-</td>
<td>Truncated week number of reference almanac</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>20</td>
<td>U1</td>
<td>-</td>
<td>svS</td>
<td>-</td>
<td>Number of satellite data sets contained in the ALP data</td>
</tr>
<tr>
<td>21</td>
<td>U1</td>
<td>-</td>
<td>reserved2</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>22</td>
<td>U2</td>
<td>-</td>
<td>reserved3</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
32.4 AID-DATA (0x0B 0x10)

32.4.1 Polls all GPS Initial Aiding Data

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Polls all GPS Initial Aiding Data</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>If this poll is received, the messages AID-INI, AID-HUI, AID-EPH and AID-ALM are sent.</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x0B 0x10 0 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload

32.5 AID-EPH (0x0B 0x31)

32.5.1 Poll GPS Aiding Ephemeris Data

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-EPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll GPS Aiding Ephemeris Data</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>This message has an empty payload!</td>
</tr>
<tr>
<td>Poll GPS Aiding Data (Ephemeris) for all 32 SVs by sending this message to the receiver without any payload. The receiver will return 32 messages of type AID-EPH as defined below.</td>
<td></td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x0B 0x31 0 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload

32.5.2 Poll GPS Aiding Ephemeris Data for a SV

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-EPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll GPS Aiding Ephemeris Data for a SV</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>Poll GPS Constellation Data (Ephemeris) for an SV by sending this message to the receiver. The receiver will return one message of type AID-EPH as defined below.</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x0B 0x31 1 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>svid</td>
<td>-</td>
<td>SV ID for which the receiver shall return its Ephemeris Data (Valid Range: 1..32).</td>
</tr>
</tbody>
</table>
32.5.3 GPS Aiding Ephemeris Input/Output Message

Message AID-EPH

Description GPS Aiding Ephemeris Input/Output Message

Firmware Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type Input/Output

Comment
- SF1D0 to SF3D7 is only sent if ephemeris is available for this SV. If not, the payload may be reduced to 8 Bytes, or all bytes are set to zero, indicating that this SV Number does not have valid ephemeris for the moment. This may happen even if NAV-SVINFO and RXM-SVSI are indicating ephemeris availability as the internal data may not represent the content of an original broadcast ephemeris (or only parts thereof).
- SF1D0 to SF3D7 contain the 24 words following the Hand-Over Word (HOW) from the GPS navigation message, subframes 1 to 3. The Truncated TOW Count is not valid and cannot be used. See IS-GPS-200 for a full description of the contents of the Subframes.
- In SF1D0 to SF3D7, the parity bits have been removed, and the 24 bits of data are located in Bits 0 to 23. Bits 24 to 31 shall be ignored.
- When polled, the data contained in this message does not represent the full original ephemeris broadcast. Some fields that are irrelevant to u-blox receivers may be missing. The week number in Subframe 1 has already been modified to match the Time Of Ephemeris (TOE).

Message Structure

<table>
<thead>
<tr>
<th>Header ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x0B 0x31</td>
<td>(8) or (104)</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>svid</td>
<td>-</td>
<td>SV ID for which this ephemeris data is (Valid Range: 1..32).</td>
</tr>
<tr>
<td>4</td>
<td>U4</td>
<td>-</td>
<td>how</td>
<td>-</td>
<td>Hand-Over Word of first Subframe. This is required if data is sent to the receiver. 0 indicates that no Ephemeris Data is following.</td>
</tr>
</tbody>
</table>

Start of optional block

8	U4[8]	-	sf1d	-	Subframe 1 Words 3..10 (SF1D0..SF1D7)
40	U4[8]	-	sf2d	-	Subframe 2 Words 3..10 (SF2D0..SF2D7)
72	U4[8]	-	sf3d	-	Subframe 3 Words 3..10 (SF3D0..SF3D7)

End of optional block
32.6 AID-HUI (0x0B 0x02)

32.6.1 Poll GPS Health, UTC and ionosphere parameters

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-HUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll GPS Health, UTC and ionosphere parameters</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Poll Request |
| Comment | This message has an empty payload! |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x0B 0x02</td>
<td>0</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload

32.6.2 GPS Health, UTC and ionosphere parameters

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-HUI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>GPS Health, UTC and ionosphere parameters</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input/Output |
| Comment | This message contains a health bit mask, UTC time and Klobuchar parameters. For more information on these parameters, please see the ICD-GPS-200 documentation. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x0B 0x02</td>
<td>72</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X4</td>
<td>-</td>
<td>health</td>
<td>-</td>
<td>Bitmask, every bit represents a GPS SV (1-32). If the bit is set the SV is healthy.</td>
</tr>
<tr>
<td>4</td>
<td>R8</td>
<td>-</td>
<td>utcA0</td>
<td>-</td>
<td>UTC - parameter A0</td>
</tr>
<tr>
<td>12</td>
<td>R8</td>
<td>-</td>
<td>utcA1</td>
<td>-</td>
<td>UTC - parameter A1</td>
</tr>
<tr>
<td>20</td>
<td>I4</td>
<td>-</td>
<td>utcTOW</td>
<td>-</td>
<td>UTC - reference time of week</td>
</tr>
<tr>
<td>24</td>
<td>I2</td>
<td>-</td>
<td>utcWNT</td>
<td>-</td>
<td>UTC - reference week number</td>
</tr>
<tr>
<td>26</td>
<td>I2</td>
<td>-</td>
<td>utcLS</td>
<td>-</td>
<td>UTC - time difference due to leap seconds before event</td>
</tr>
<tr>
<td>28</td>
<td>I2</td>
<td>-</td>
<td>utcWNF</td>
<td>-</td>
<td>UTC - week number when next leap second event occurs</td>
</tr>
<tr>
<td>30</td>
<td>I2</td>
<td>-</td>
<td>utcDN</td>
<td>-</td>
<td>UTC - day of week when next leap second event occurs</td>
</tr>
<tr>
<td>32</td>
<td>I2</td>
<td>-</td>
<td>utcLSF</td>
<td>-</td>
<td>UTC - time difference due to leap seconds after event</td>
</tr>
<tr>
<td>34</td>
<td>I2</td>
<td>-</td>
<td>utcSpare</td>
<td>-</td>
<td>UTC - Spare to ensure structure is a multiple of 4 bytes</td>
</tr>
<tr>
<td>36</td>
<td>R4</td>
<td>-</td>
<td>klobA0</td>
<td>s</td>
<td>Klobuchar - alpha 0</td>
</tr>
<tr>
<td>40</td>
<td>R4</td>
<td>-</td>
<td>klobA1</td>
<td>s/semicircle</td>
<td>Klobuchar - alpha 1</td>
</tr>
</tbody>
</table>
AID-HUI continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>R4</td>
<td>-</td>
<td>klobA2</td>
<td>s/semicircle²</td>
<td>Klobuchar - alpha 2</td>
</tr>
<tr>
<td>48</td>
<td>R4</td>
<td>-</td>
<td>klobA3</td>
<td>s/semicircle³</td>
<td>Klobuchar - alpha 3</td>
</tr>
<tr>
<td>52</td>
<td>R4</td>
<td>-</td>
<td>klobB0</td>
<td>s</td>
<td>Klobuchar - beta 0</td>
</tr>
<tr>
<td>56</td>
<td>R4</td>
<td>-</td>
<td>klobB1</td>
<td>s/semicircle</td>
<td>Klobuchar - beta 1</td>
</tr>
<tr>
<td>60</td>
<td>R4</td>
<td>-</td>
<td>klobB2</td>
<td>s/semicircle²</td>
<td>Klobuchar - beta 2</td>
</tr>
<tr>
<td>64</td>
<td>R4</td>
<td>-</td>
<td>klobB3</td>
<td>s/semicircle³</td>
<td>Klobuchar - beta 3</td>
</tr>
<tr>
<td>68</td>
<td>X4</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>flags (see graphic below)</td>
</tr>
</tbody>
</table>

Bitfield flags
This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>healthValid</td>
<td>Healthmask field in this message is valid</td>
</tr>
<tr>
<td>utcValid</td>
<td>UTC parameter fields in this message are valid</td>
</tr>
<tr>
<td>klobValid</td>
<td>Klobuchar parameter fields in this message are valid</td>
</tr>
</tbody>
</table>

32.7 AID-INI (0x0B 0x01)

32.7.1 Poll GPS Initial Aiding Data

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-INI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll GPS Initial Aiding Data</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>This message has an empty payload!</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x08 0x01</td>
<td>0</td>
<td>see below</td>
</tr>
</tbody>
</table>

No payload
32.7.2 Aiding position, time, frequency, clock drift

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-INI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Aiding position, time, frequency, clock drift</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input/Output |
| Comment | This message contains position, time and clock drift information. The position can be input in either the ECEF X/Y/Z coordinate system or as lat/lon/height. The time can either be input as inexact value via the standard communication interface, suffering from latency depending on the baudrate, or using hardware time synchronization where an accurate time pulse is input on the external interrupts. It is also possible to supply hardware frequency aiding by connecting a continuous signal to an external interrupt. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x0B 0x01</td>
<td>48</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I4</td>
<td>-</td>
<td>ecefXOrLat</td>
<td>cm_or_deg*1e-7</td>
<td>WGS84 ECEF X coordinate or latitude, depending on flags below</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>ecefYOrLon</td>
<td>cm_or_deg*1e-7</td>
<td>WGS84 ECEF Y coordinate or longitude, depending on flags below</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>ecefZOrAlt</td>
<td>cm</td>
<td>WGS84 ECEF Z coordinate or altitude, depending on flags below</td>
</tr>
<tr>
<td>12</td>
<td>U4</td>
<td>-</td>
<td>posAcc</td>
<td>cm</td>
<td>Position accuracy (stddev)</td>
</tr>
<tr>
<td>16</td>
<td>X2</td>
<td>-</td>
<td>tmCfg</td>
<td>-</td>
<td>Time mark configuration (see graphic below)</td>
</tr>
<tr>
<td>18</td>
<td>U2</td>
<td>-</td>
<td>wnoOrDate</td>
<td>week_or_year</td>
<td>Actual week number or yearSince2000/Month (YYMM), depending on flags below</td>
</tr>
<tr>
<td>20</td>
<td>U4</td>
<td>-</td>
<td>towOrTime</td>
<td>ms_or_dayHourMinuteSec</td>
<td>Actual time of week or DayOfMonth/Hour/Minute/Second (DDHHMMSS), depending on flags below</td>
</tr>
<tr>
<td>24</td>
<td>I4</td>
<td>-</td>
<td>towNs</td>
<td>ns</td>
<td>Fractional part of time of week</td>
</tr>
<tr>
<td>28</td>
<td>U4</td>
<td>-</td>
<td>tAccMs</td>
<td>ms</td>
<td>Milliseconds part of time accuracy</td>
</tr>
<tr>
<td>32</td>
<td>U4</td>
<td>-</td>
<td>tAccNs</td>
<td>ns</td>
<td>Nanoseconds part of time accuracy</td>
</tr>
<tr>
<td>36</td>
<td>I4</td>
<td>-</td>
<td>clkDOrFreq</td>
<td>ns/s_or_Hz*1e-2</td>
<td>Clock drift or frequency, depending on flags below</td>
</tr>
<tr>
<td>40</td>
<td>U4</td>
<td>-</td>
<td>clkDAccOrFreqAcc</td>
<td>ns/s_or_ppb</td>
<td>Accuracy of clock drift or frequency, depending on flags below</td>
</tr>
<tr>
<td>44</td>
<td>X4</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>Bitmask with the following flags (see graphic below)</td>
</tr>
</tbody>
</table>
Bitfield tmCfg
This Graphic explains the bits of tmCfg

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fEdge</td>
<td>use falling edge (default rising)</td>
</tr>
<tr>
<td>tm1</td>
<td>time mark on extint 1 (default extint 0)</td>
</tr>
<tr>
<td>f1</td>
<td>frequency on extint 1 (default extint 0)</td>
</tr>
</tbody>
</table>

Bitfield flags
This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>Position is valid</td>
</tr>
<tr>
<td>time</td>
<td>Time is valid</td>
</tr>
<tr>
<td>clockD</td>
<td>Clock drift data contains valid clock drift, must not be set together with clockF</td>
</tr>
<tr>
<td>tp</td>
<td>Use time pulse</td>
</tr>
<tr>
<td>clockF</td>
<td>Clock drift data contains valid frequency, must not be set together with clockD</td>
</tr>
<tr>
<td>lla</td>
<td>Position is given in lat/long/alt (default is ECEF)</td>
</tr>
<tr>
<td>altInv</td>
<td>Altitude is not valid, in case lla was set</td>
</tr>
<tr>
<td>prevTm</td>
<td>Use time mark received before AID-INI message (default uses mark received after message)</td>
</tr>
<tr>
<td>utc</td>
<td>Time is given as UTC date/time (default is GPS wno/tow)</td>
</tr>
</tbody>
</table>

32.8 AID-REQ (0x0B 0x00)
32.8.1 Sends a poll (AID-DATA) for all GPS Aiding Data

<table>
<thead>
<tr>
<th>Message</th>
<th>AID-REQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sends a poll (AID-DATA) for all GPS Aiding Data</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Virtual</td>
</tr>
<tr>
<td>Comment</td>
<td>AID-REQ is not a message but a placeholder for configuration purposes. If the virtual AID-REQ is configured to be output (see CFG-MSG), the receiver will output a request for aiding data (AID-DATA) after a start-up if its internally stored data (position, time) don't allow it to perform a hot start. If position and time information could be retrieved from internal storage, no AID-REQ will be sent, even when the receiver is missing valid ephemeris data. Only GPS orbits are supported for GNSS.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x08 0x00</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload
33 CFG (0x06)

Configuration Input Messages: i.e. Set Dynamic Model, Set DOP Mask, Set Baud Rate, etc.. The CFG Class can be used to configure the receiver and read out current configuration values. Any messages in Class CFG sent to the receiver are acknowledged (with Message ACK-ACK) if processed successfully, and rejected (with Message ACK-NAK) if processing the message failed.

33.1 CFG-ANT (0x06 0x13)

33.1.1 Poll Antenna Control Settings

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-ANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll Antenna Control Settings</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>Sending this (empty / no-payload) message to the receiver results in the receiver returning a message of type CFG-ANT with a payload as defined below</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x13</td>
</tr>
<tr>
<td>No payload</td>
<td></td>
</tr>
</tbody>
</table>

33.1.2 Antenna Control Settings

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-ANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Antenna Control Settings</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x13</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X2</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>Antenna Flag Mask (see graphic below)</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-</td>
<td>pins</td>
<td>-</td>
<td>Antenna Pin Configuration (see graphic below)</td>
</tr>
</tbody>
</table>

Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

- svcs: Enable Antenna Supply Voltage Control Signal
- scd: Enable Short Circuit Detection
Bitfield flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ocd</td>
<td>Enable Open Circuit Detection</td>
</tr>
<tr>
<td>pdwnOnSCD</td>
<td>Power Down Antenna supply if Short Circuit is detected. (only in combination with Bit 1)</td>
</tr>
<tr>
<td>recovery</td>
<td>Enable automatic recovery from short state</td>
</tr>
</tbody>
</table>

Bitfield pins

This Graphic explains the bits of pins

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pinSwitch</td>
<td>PIO-Pin used for switching antenna supply (internal to TIM-LP/TIM-LF)</td>
</tr>
<tr>
<td>pinSCD</td>
<td>PIO-Pin used for detecting a short in the antenna supply</td>
</tr>
<tr>
<td>pinOCD</td>
<td>PIO-Pin used for detecting open/not connected antenna</td>
</tr>
<tr>
<td>reconfig</td>
<td>if set to one, and this command is sent to the receiver, the receiver will reconfigure the pins as specified.</td>
</tr>
</tbody>
</table>

33.2 CFG-CFG (0x06 0x09)

33.2.1 Clear, Save and Load configurations

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-CFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Clear, Save and Load configurations</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Command</td>
</tr>
<tr>
<td>Comment</td>
<td>See the Receiver Configuration chapter for a detailed description on how Receiver Configuration should be used. The three masks are made up of individual bits, each bit indicating the sub-section of all configurations on which the corresponding action shall be carried out. The reserved bits in the masks must be set to '0'. For detailed information please refer to the Organization of the Configuration Sections. Please note that commands can be combined. The sequence of execution is Clear, Save, Load</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x09</td>
<td>(12) or (13)</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X4</td>
<td>-</td>
<td>clearMask</td>
<td>-</td>
<td>Mask with configuration sub-sections to Clear (=Load Default Configurations to Permanent Configurations in non-volatile memory) (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>saveMask</td>
<td>-</td>
<td>Mask with configuration sub-section to Save (=Save Current Configuration to Non-volatile Memory), see ID description of clearMask</td>
</tr>
</tbody>
</table>
CFG-CFG continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>X4</td>
<td>-</td>
<td>loadMask</td>
<td>-</td>
<td>Mask with configuration sub-sections to Load (=Load Permanent Configurations from Non-volatile Memory to Current Configurations), see ID description of clearMask</td>
</tr>
</tbody>
</table>

Start of optional block

| 12 | X1 | - | deviceMask | - | Mask which selects the devices for this command. (see graphic below) |

End of optional block

Bitfield clearMask

This Graphic explains the bits of clearMask

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ioPort</td>
<td>Port Settings</td>
</tr>
<tr>
<td>msgConf</td>
<td>Message Configuration</td>
</tr>
<tr>
<td>infMsg</td>
<td>INF Message Configuration</td>
</tr>
<tr>
<td>navConf</td>
<td>Navigation Configuration</td>
</tr>
<tr>
<td>rxmConf</td>
<td>Receiver Manager Configuration</td>
</tr>
<tr>
<td>rinvConf</td>
<td>Remote Inventory Configuration</td>
</tr>
<tr>
<td>antConf</td>
<td>Antenna Configuration</td>
</tr>
</tbody>
</table>

Bitfield deviceMask

This Graphic explains the bits of deviceMask

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>devBBR</td>
<td>device battery backed RAM</td>
</tr>
<tr>
<td>devFlash</td>
<td>device Flash</td>
</tr>
<tr>
<td>devEEPROM</td>
<td>device EEPROM</td>
</tr>
<tr>
<td>devSpiFlash</td>
<td>device SPI Flash</td>
</tr>
</tbody>
</table>
33.3 CFG-DAT (0x06 0x06)

33.3.1 Poll Datum Setting

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll Datum Setting</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>Upon sending of this message, the receiver returns CFG-DAT as defined below</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x06</td>
<td>0</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload

33.3.2 Set User-defined Datum

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Set User-defined Datum</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x06</td>
<td>44</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R8</td>
<td>-</td>
<td>majA</td>
<td>m</td>
<td>Semi-major Axis (accepted range = 6,300,000.0 to 6,500,000.0 metres).</td>
</tr>
<tr>
<td>8</td>
<td>R8</td>
<td>-</td>
<td>flat</td>
<td>-</td>
<td>1.0 / Flattening (accepted range is 0.0 to 500.0).</td>
</tr>
<tr>
<td>16</td>
<td>R4</td>
<td>-</td>
<td>dX</td>
<td>m</td>
<td>X Axis shift at the origin (accepted range is +/- 5000.0 metres).</td>
</tr>
<tr>
<td>20</td>
<td>R4</td>
<td>-</td>
<td>dY</td>
<td>m</td>
<td>Y Axis shift at the origin (accepted range is +/- 5000.0 metres).</td>
</tr>
<tr>
<td>24</td>
<td>R4</td>
<td>-</td>
<td>dZ</td>
<td>m</td>
<td>Z Axis shift at the origin (accepted range is +/- 5000.0 metres).</td>
</tr>
<tr>
<td>28</td>
<td>R4</td>
<td>-</td>
<td>rotX</td>
<td>s</td>
<td>Rotation about the X Axis (accepted range is +/- 20.0 milli-arc seconds).</td>
</tr>
<tr>
<td>32</td>
<td>R4</td>
<td>-</td>
<td>rotY</td>
<td>s</td>
<td>Rotation about the Y Axis (accepted range is +/- 20.0 milli-arc seconds).</td>
</tr>
<tr>
<td>36</td>
<td>R4</td>
<td>-</td>
<td>rotZ</td>
<td>s</td>
<td>Rotation about the Z Axis (accepted range is +/- 20.0 milli-arc seconds).</td>
</tr>
<tr>
<td>40</td>
<td>R4</td>
<td>-</td>
<td>scale</td>
<td>ppm</td>
<td>Scale change (accepted range is 0.0 to 50.0 parts per million).</td>
</tr>
</tbody>
</table>
33.3.3 The currently defined Datum

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The currently defined Datum</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
 - u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Output |
| Comment | Returns the parameters of the currently defined datum. If no user-defined datum has been set, this will default to WGS84. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x06</td>
<td>52</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U2</td>
<td>-</td>
<td>datumNum</td>
<td>-</td>
<td>Datum Number: 0 = WGS84, -1 = user-defined</td>
</tr>
<tr>
<td>2</td>
<td>CH[6]</td>
<td>-</td>
<td>datumName</td>
<td>-</td>
<td>ASCII String: WGS84 or USER</td>
</tr>
<tr>
<td>8</td>
<td>R8</td>
<td>-</td>
<td>majA</td>
<td>m</td>
<td>Semi-major Axis (accepted range = 6,300,000.0 to 6,500,000.0 metres).</td>
</tr>
<tr>
<td>16</td>
<td>R8</td>
<td>-</td>
<td>flat</td>
<td>-</td>
<td>1.0 / Flattening (accepted range is 0.0 to 500.0).</td>
</tr>
<tr>
<td>24</td>
<td>R4</td>
<td>-</td>
<td>dX</td>
<td>m</td>
<td>X Axis shift at the origin (accepted range is +/- 5000.0 metres).</td>
</tr>
<tr>
<td>28</td>
<td>R4</td>
<td>-</td>
<td>dY</td>
<td>m</td>
<td>Y Axis shift at the origin (accepted range is +/- 5000.0 metres).</td>
</tr>
<tr>
<td>32</td>
<td>R4</td>
<td>-</td>
<td>dZ</td>
<td>m</td>
<td>Z Axis shift at the origin (accepted range is +/- 5000.0 metres).</td>
</tr>
<tr>
<td>36</td>
<td>R4</td>
<td>-</td>
<td>rotX</td>
<td>s</td>
<td>Rotation about the X Axis (accepted range is +/- 20.0 milli-arc seconds).</td>
</tr>
<tr>
<td>40</td>
<td>R4</td>
<td>-</td>
<td>rotY</td>
<td>s</td>
<td>Rotation about the Y Axis (accepted range is +/- 20.0 milli-arc seconds).</td>
</tr>
<tr>
<td>44</td>
<td>R4</td>
<td>-</td>
<td>rotZ</td>
<td>s</td>
<td>Rotation about the Z Axis (accepted range is +/- 20.0 milli-arc seconds).</td>
</tr>
<tr>
<td>48</td>
<td>R4</td>
<td>-</td>
<td>scale</td>
<td>ppm</td>
<td>Scale change (accepted range is 0.0 to 50.0 parts per million).</td>
</tr>
</tbody>
</table>
33.4 CFG-GNSS (0x06 0x3E)

33.4.1 Polls the configuration of the GNSS system configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-GNSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Polls the configuration of the GNSS system configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>Polls the configuration of the GNSS system configuration</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62</td>
</tr>
</tbody>
</table>

33.4.2 GNSS system configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-GNSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>GNSS system configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td>Gets or sets the GNSS system channel sharing configuration. The receiver will send an UBX-ACK-ACK message if the configuration is valid, an UBX-ACK-NAK if any configuration parameter is invalid. The number of tracking channels in use must not exceed the number of tracking channels available on hardware, and the sum of all reserved tracking channels needs to be smaller or equal the number of tracking channels in use. Additionally, the maximum number of tracking channels used for the specific GNSS system must be greater or equal to the number of reserved tracking channels. See section GNSS Configuration for a discussion of the use of this message and section Satellite Numbering for a description of the GNSS IDs available. Configuration specific to the GNSS system can be done via other messages. Configuration specific to SBAS can be done with CFG-SBAS. Note that GLONASS operation cannot be selected when the receiver is configured to operate in Power Save Mode (using CFG-RXM).</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>msgVer</td>
<td>-</td>
<td>Message version (=0 for this version)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>numTrkChHw</td>
<td>-</td>
<td>Number of tracking channels available in hardware (read only)</td>
</tr>
<tr>
<td>2</td>
<td>U1</td>
<td>-</td>
<td>numTrkChUse</td>
<td>-</td>
<td>Number of tracking channels to use (<= numTrkChHw)</td>
</tr>
<tr>
<td>3</td>
<td>U1</td>
<td>-</td>
<td>numConfigBlocks</td>
<td>-</td>
<td>Number of configuration blocks following</td>
</tr>
</tbody>
</table>

Start of repeated block (numConfigBlocks times)

| 4 + 8*N | U1 | - | gnssId | - | GNSS identifier (see Satellite Numbering) |
CFG-GNSS continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 + 8*N</td>
<td>U1</td>
<td>-</td>
<td>resTrkCh</td>
<td>-</td>
<td>Number of reserved (minimum) tracking channels for this GNSS system</td>
</tr>
<tr>
<td>6 + 8*N</td>
<td>U1</td>
<td>-</td>
<td>maxTrkCh</td>
<td>-</td>
<td>Maximum number of tracking channels used for this GNSS system (>=resTrkChn)</td>
</tr>
<tr>
<td>7 + 8*N</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>8 + 8*N</td>
<td>X4</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>bitfield of flags (see graphic below)</td>
</tr>
</tbody>
</table>

End of repeated block

Bitfield flags

This Graphic explains the bits of flags

- **enable**
- **reserved**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enable this GNSS system</td>
</tr>
</tbody>
</table>

33.5 CFG-INF (0x06 0x02)

33.5.1 Poll INF message configuration for one protocol

Message

CFG-INF

Description

Poll INF message configuration for one protocol

Firmware

Supported on:

- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

Poll Request

Comment

-

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x02</td>
<td>1</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>protocolID</td>
<td>-</td>
<td>Protocol Identifier, identifying the output protocol for this Poll Request. The following are valid Protocol Identifiers: 0: UBX Protocol 1: NMEA Protocol 2-255: Reserved</td>
</tr>
</tbody>
</table>
33.5.2 Information message configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-INF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Information message configuration</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input/Output |
| Comment | The value of infMsgMask[x] below are that each bit represents one of the INF class messages (Bit 0 for ERROR, Bit 1 for WARNING and so on). For a complete list, please see the Message Class INF. Several configurations can be concatenated to one input message. In this case the payload length can be a multiple of the normal length. Output messages from the module contain only one configuration unit. Please note that I/O Targets 1 and 2 correspond to serial ports 1 and 2. I/O target 0 is DDC. I/O target 3 is USB. I/O target 4 is SPI. I/O target 5 is reserved for future use. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x02</td>
<td>0 + 10*N</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
</table>
| N*10 | U1 | - | protocolID | - | Protocol Identifier, identifying for which protocol the configuration is set/get. The following are valid Protocol Identifiers:
0: UBX Protocol
1: NMEA Protocol
2-255: Reserved |
| 1 + 10*N | U1 | - | reserved0 | - | Reserved |
| 2 + 10*N | U2 | - | reserved1 | - | Reserved |
| 4 + 10*N | X1[6] | - | infMsgMask | - | A bit mask, saying which information messages are enabled on each I/O target (see graphic below) |

Bitfield infMsgMask

This Graphic explains the bits of infMsgMask

<table>
<thead>
<tr>
<th>TEST</th>
<th>EEBAG</th>
<th>NOTICE</th>
<th>WARNING</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

GPS.G6-SW-12013

Public Release

Page 92 of 168
33.6 CFG-ITFM (0x06 0x39)

33.6.1 Polls the Jamming/Interference Monitor configuration.

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-ITFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Polls the Jamming/Interference Monitor configuration.</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Poll Request | | | | |
| Comment | - |
| Message Structure | Header | ID | Length (Bytes) | Payload | Checksum |
| | 0xB5 0x62 | 0x06 0x39 | 0 | see below | CK_A CK_B |
| No payload |

33.6.2 Jamming/Interference Monitor configuration.

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-ITFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Jamming/Interference Monitor configuration.</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Command | | | | |
| Comment | Configuration of Jamming/Interference monitor. |
| Message Structure | Header | ID | Length (Bytes) | Payload | Checksum |
| | 0xB5 0x62 | 0x06 0x39 | 8 | see below | CK_A CK_B |
| Payload Contents: |

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X4</td>
<td>-</td>
<td>config</td>
<td>-</td>
<td>interference config word. (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>config2</td>
<td>-</td>
<td>extra settings for jamming/interference monitor (see graphic below)</td>
</tr>
</tbody>
</table>

Bitfield config

This Graphic explains the bits of config

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbThreshold</td>
<td>Broadband jamming detection threshold (unit = dB)</td>
</tr>
<tr>
<td>cwThreshold</td>
<td>CW jamming detection threshold (unit = dB)</td>
</tr>
<tr>
<td>reserved1</td>
<td>reserved algorithm settings - should be set to 0x16B156 in hex for correct settings</td>
</tr>
<tr>
<td>enable</td>
<td>enable interference detection</td>
</tr>
</tbody>
</table>
Bitfield config2
This Graphic explains the bits of config2

<table>
<thead>
<tr>
<th>Bit Index</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-30</td>
<td>reserved2</td>
<td>should be set to 0x31E in hex for correct setting</td>
</tr>
<tr>
<td>29-28</td>
<td>antSetting</td>
<td>antennaSetting, 0=unknown, 1=passive, 2=active</td>
</tr>
<tr>
<td>27-26</td>
<td>reserved3</td>
<td>reserved, set to 0</td>
</tr>
</tbody>
</table>

33.7 CFG-MSG (0x06 0x01)

33.7.1 Poll a message configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-MSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll a message configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x06 0x01 2 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>msgClass</td>
<td>-</td>
<td>Message Class</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>msgID</td>
<td>-</td>
<td>Message Identifier</td>
</tr>
</tbody>
</table>

33.7.2 Set Message Rate(s)

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-MSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Set Message Rate(s)</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td>Set/Get message rate configuration(s) to/from the receiver. See also section How to change between protocols.</td>
</tr>
<tr>
<td></td>
<td>• Send rate is relative to the event a message is registered on. For example, if the rate of a navigation message is set to 2, the message is sent every second navigation solution. For configuring NMEA messages, the section NMEA Messages Overview describes Class and Identifier numbers used.</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x06 0x01 8 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:
33.7.3 Set Message Rate

Description: Set Message Rate

Firmware: Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type: Input/Output

Comment: Set message rate configuration for the current target. See also section How to change between protocols.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x01</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>msgClass</td>
<td>-</td>
<td>Message Class</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>msgID</td>
<td>-</td>
<td>Message Identifier</td>
</tr>
<tr>
<td>2</td>
<td>U1[6]</td>
<td>-</td>
<td>rate</td>
<td>-</td>
<td>Send rate on I/O Target (6 Targets)</td>
</tr>
</tbody>
</table>

33.8 CFG-NAV5 (0x06 0x24)

33.8.1 Poll Navigation Engine Settings

Description: Poll Navigation Engine Settings

Firmware: Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type: Poll Request

Comment: Sending this (empty / no-payload) message to the receiver results in the receiver returning a message of type CFG-NAV5 with a payload as defined below.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x24</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload
33.8.2 Navigation Engine Settings

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-NAV5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Navigation Engine Settings</td>
</tr>
</tbody>
</table>
| **Firmware** | Supported on:
 - u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| **Type** | Input/Output |
| **Comment** | See the Navigation Configuration Settings Description for a detailed description of how these settings affect receiver operation. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x24</td>
<td>36</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X2</td>
<td>-</td>
<td>mask</td>
<td></td>
<td>Parameters Bitmask. Only the masked parameters will be applied. (see graphic below)</td>
</tr>
</tbody>
</table>
| 2 | U1 | - | dynModel | | Dynamic Platform model:
 0 Portable
 2 Stationary
 3 Pedestrian
 4 Automotive
 5 Sea
 6 Airborne with <1g Acceleration
 7 Airborne with <2g Acceleration
 8 Airborne with <4g Acceleration |
| 3 | U1 | - | fixMode | | Position Fixing Mode.
 1: 2D only
 2: 3D only
 3: Auto 2D/3D |
| 4 | I4 | 0.01 | fixedAlt | m | Fixed altitude (mean sea level) for 2D fix mode. |
| 8 | U4 | 0.0001 | fixedAltVar | m^2 | Fixed altitude variance for 2D mode. |
| 12 | I1 | - | minElev | deg | Minimum Elevation for a GNSS satellite to be used in NAV |
| 13 | U1 | - | drLimit | s | Reserved |
| 14 | U2 | 0.1 | pDop | | Position DOP Mask to use |
| 16 | U2 | 0.1 | tDop | | Time DOP Mask to use |
| 18 | U2 | - | pAcc | m | Position Accuracy Mask |
| 20 | U2 | - | tAcc | m | Time Accuracy Mask |
| 22 | U1 | - | staticHoldThr| cm/s | Static hold threshold |
| 23 | U1 | - | dgpsTimeOut | s | DGPS timeout. |
| 24 | U1 | - | cnoThreshNumS| | Number of satellites required to have C/N0 above cnoThresh for a valid fix. |
| 25 | U1 | - | cnoThresh | dBHz | C/N0 threshold for a valid fix. |
| 26 | U2 | - | reserved2 | | Always set to zero |
| 28 | U4 | - | reserved3 | | Always set to zero |
| 32 | U4 | - | reserved4 | | Always set to zero |
Bitfield mask

This Graphic explains the bits of mask

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>reserved</td>
</tr>
<tr>
<td>14</td>
<td>reserved</td>
</tr>
<tr>
<td>13</td>
<td>reserved</td>
</tr>
<tr>
<td>12</td>
<td>reserved</td>
</tr>
<tr>
<td>11</td>
<td>reserved</td>
</tr>
<tr>
<td>10</td>
<td>reserved</td>
</tr>
<tr>
<td>9</td>
<td>reserved</td>
</tr>
<tr>
<td>8</td>
<td>reserved</td>
</tr>
<tr>
<td>7</td>
<td>reserved</td>
</tr>
<tr>
<td>6</td>
<td>reserved</td>
</tr>
<tr>
<td>5</td>
<td>reserved</td>
</tr>
<tr>
<td>4</td>
<td>reserved</td>
</tr>
<tr>
<td>3</td>
<td>reserved</td>
</tr>
<tr>
<td>2</td>
<td>reserved</td>
</tr>
<tr>
<td>1</td>
<td>reserved</td>
</tr>
<tr>
<td>0</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Name	Description
dyn | Apply dynamic model settings
minEl | Apply minimum elevation settings
posFixMode | Apply fix mode settings
drLim | Reserved
posMask | Apply position mask settings
timeMask | Apply time mask settings
staticHoldMask | Apply static hold settings
dgpsMask | Apply DGPS settings.
reservedBit0 | reserved

33.9 CFG-NAVX5 (0x06 0x23)

33.9.1 Poll Navigation Engine Expert Settings

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-NAVX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll Navigation Engine Expert Settings</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
 • u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Poll Request | | | | |
| Comment | Sending this (empty / no-payload) message to the receiver results in the receiver returning a message of type CFG-NAVX5 with a payload as defined below. |
| Message Structure | Header | ID | Length (Bytes) | Payload | Checksum |
| | 0xB5 0x62 | 0x06 0x23 | 0 | see below | CK_A CK_B |
| No payload | | | | | |
33.9.2 Navigation Engine Expert Settings

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-NAVX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Navigation Engine Expert Settings</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
| | • u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input/Output |
| Comment | - |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5 0x62</td>
<td>0x06 0x23</td>
<td>40</td>
<td>see below</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payload Contents:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U2</td>
<td>-</td>
<td>version</td>
<td>-</td>
<td>Message version (0 for this version)</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-</td>
<td>mask1</td>
<td>-</td>
<td>First Parameters Bitmask. Only the flagged parameters will be applied, unused bits must be set to 0. (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>U4</td>
<td>-</td>
<td>reserved0</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>8</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>9</td>
<td>U1</td>
<td>-</td>
<td>reserved2</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>10</td>
<td>U1</td>
<td>-</td>
<td>minSVs</td>
<td>#SVs</td>
<td>Minimum number of satellites for navigation</td>
</tr>
<tr>
<td>11</td>
<td>U1</td>
<td>-</td>
<td>maxSVs</td>
<td>#SVs</td>
<td>Maximum number of satellites for navigation</td>
</tr>
<tr>
<td>12</td>
<td>U1</td>
<td>-</td>
<td>minCNO</td>
<td>dBHz</td>
<td>Minimum satellite signal level for navigation</td>
</tr>
<tr>
<td>13</td>
<td>U1</td>
<td>-</td>
<td>reserved5</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>14</td>
<td>U1</td>
<td>-</td>
<td>iniFix3D</td>
<td>-</td>
<td>Initial Fix must be 3D flag (0=false/1=true)</td>
</tr>
<tr>
<td>15</td>
<td>U1</td>
<td>-</td>
<td>reserved6</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>16</td>
<td>U1</td>
<td>-</td>
<td>reserved7</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>17</td>
<td>U1</td>
<td>-</td>
<td>reserved8</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>18</td>
<td>U2</td>
<td>-</td>
<td>wknRollover</td>
<td>-</td>
<td>GPS week rollover number; GPS week numbers will be set correctly from this week up to 1024 weeks after this week. Setting this to 0 reverts to firmware default.</td>
</tr>
<tr>
<td>20</td>
<td>U4</td>
<td>-</td>
<td>reserved9</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>24</td>
<td>U1</td>
<td>-</td>
<td>reserved10</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>25</td>
<td>U1</td>
<td>-</td>
<td>reserved11</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>26</td>
<td>U1</td>
<td>-</td>
<td>usePPP</td>
<td>-</td>
<td>Only supported on certain product variants</td>
</tr>
<tr>
<td>27</td>
<td>U1</td>
<td>-</td>
<td>aopCfg</td>
<td>-</td>
<td>AssistNow Autonomous configuration (see graphic below)</td>
</tr>
<tr>
<td>28</td>
<td>U1</td>
<td>-</td>
<td>reserved12</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>29</td>
<td>U1</td>
<td>-</td>
<td>reserved13</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>30</td>
<td>U2</td>
<td>-</td>
<td>aopOrbMaxErr</td>
<td>m</td>
<td>maximum acceptable (modelled) AssistNow Autonomous orbit error (valid range = 5..1000, or 0 = reset to firmware default)</td>
</tr>
<tr>
<td>32</td>
<td>U1</td>
<td>-</td>
<td>reserved14</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>33</td>
<td>U1</td>
<td>-</td>
<td>reserved15</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>34</td>
<td>U2</td>
<td>-</td>
<td>reserved3</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>36</td>
<td>U4</td>
<td>-</td>
<td>reserved4</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
</tbody>
</table>
Bitfield mask1
This Graphic explains the bits of mask1

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>minMax</td>
<td>Apply min/max SVs settings</td>
</tr>
<tr>
<td>minCno</td>
<td>Apply minimum C/N0 setting</td>
</tr>
<tr>
<td>initial3dfix</td>
<td>Apply initial 3D fix settings</td>
</tr>
<tr>
<td>wknRoll</td>
<td>Apply GPS weeknumber rollover settings</td>
</tr>
<tr>
<td>ppp</td>
<td>Only supported on certain product variants</td>
</tr>
<tr>
<td>aop</td>
<td>Apply useAOP flag and aopOrbMaxErr setting (AssistNow Autonomous)</td>
</tr>
</tbody>
</table>

Bitfield aopCfg
This Graphic explains the bits of aopCfg

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>useAOP</td>
<td>AOP enabled flag</td>
</tr>
</tbody>
</table>

33.10 CFG-NMEA (0x06 0x17)
33.10.1 Poll the NMEA protocol configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-NMEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll the NMEA protocol configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>ID</td>
<td>Length (Bytes)</td>
</tr>
<tr>
<td>0xB5 0x62 0x06 0x17</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload
33.10.2 NMEA protocol configuration (deprecated)

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-NMEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>NMEA protocol configuration (deprecated)</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
 - u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input/Output |
| Comment | This message version is provided for backwards compatibility only. Please use the alternative UBX-CFG-NMEA message instead. Set/Get the NMEA protocol configuration. See section NMEA Protocol Configuration for a detailed description of the configuration effects on NMEA output. |

Message Structure

<table>
<thead>
<tr>
<th>Header ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x17</td>
<td>4</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X1</td>
<td>-</td>
<td>filter</td>
<td>-</td>
<td>filter flags (see graphic below)</td>
</tr>
</tbody>
</table>
| 1 | U1 | - | nmeaVersion | - | 0x23 = NMEA version 2.3
 0x21 = NMEA version 2.1 |
| 2 | U1 | - | numSV | - | Maximum Number of SVs to report in NMEA protocol (0 = unlimited).
This does not affect the receiver’s operation. It only limits the number of SVs reported in NMEA mode (this might be needed with older mapping applications which only support 8- or 12-channel receivers). |
| 3 | X1 | - | flags | - | flags (see graphic below) |

Bitfield filter

This Graphic explains the bits of filter

```
  5 4 3 2 1 0
posFilt 0
mskPosFilt 1
posFilt 1
timeFilt 0
dateFilt 1
gpsOnlyFilter 0
trackFilt 1
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>posFilt</td>
<td>Enable position output for failed or invalid fixes</td>
</tr>
<tr>
<td>mskPosFilt</td>
<td>Enable position output for invalid fixes</td>
</tr>
<tr>
<td>timeFilt</td>
<td>Enable time output for invalid times</td>
</tr>
<tr>
<td>dateFilt</td>
<td>Enable date output for invalid dates</td>
</tr>
<tr>
<td>gpsOnlyFilter</td>
<td>Restrict output to GPS satellites only</td>
</tr>
<tr>
<td>trackFilt</td>
<td>Enable COG output even if COG is frozen</td>
</tr>
</tbody>
</table>
Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>compat</td>
<td>enable compatibility mode. This might be needed for certain applications when customer’s NMEA parser expects a fixed number of digits in position coordinates</td>
</tr>
<tr>
<td>consider</td>
<td>enable considering mode.</td>
</tr>
</tbody>
</table>

33.10.3 NMEA protocol configuration

Message

CFG-NMEA

Description

NMEA protocol configuration

Firmware

Supported on:

- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

Input/Output

Comment

Set/Get the NMEA protocol configuration. See section NMEA Protocol Configuration for a detailed description of the configuration effects on NMEA output.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x17</td>
<td>12</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X1</td>
<td>-</td>
<td>filter</td>
<td>-</td>
<td>filter flags (see graphic below)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>nmeaVersion</td>
<td>-</td>
<td>0x23 = NMEA version 2.3 0x21 = NMEA version 2.1</td>
</tr>
<tr>
<td>2</td>
<td>U1</td>
<td>-</td>
<td>numSV</td>
<td>-</td>
<td>Maximum Number of SVs to report in NMEA protocol. This does not affect the receiver’s operation. It only limits the number of SVs reported in NMEA mode (this might be needed with older mapping applications which only support 8- or 12-channel receivers).</td>
</tr>
<tr>
<td>3</td>
<td>X1</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>flags (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>gnssToFilter</td>
<td>-</td>
<td>Filters out satellites based on their GNSS. If a bitfield is enabled, the corresponding satellites will be not output. (see graphic below)</td>
</tr>
<tr>
<td>8</td>
<td>U1</td>
<td>-</td>
<td>svNumbering</td>
<td>-</td>
<td>Configures the display of satellites that do not have an NMEA-defined value. Note: this does not apply to satellites with an unknown ID. 0: Strict - Satellites are not output 1: Extended - Use UBX proprietary numbering (see Satellite numbering)</td>
</tr>
</tbody>
</table>
CFG-NMEA continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>U1</td>
<td>-</td>
<td>mainTalkerId</td>
<td>-</td>
<td>By default the main Talker ID (i.e. the Talker ID used for all messages other than GSV) is determined by the GNSS assignment of the receiver's channels (see UBX–CFG–GNSS). This field enables the main Talker ID to be overridden. 0: Main Talker ID is not overridden 1: Set main Talker ID to ‘GP’ 2: Set main Talker ID to ‘GL’ 3: Set main Talker ID to ‘GN’</td>
</tr>
<tr>
<td>10</td>
<td>U1</td>
<td>-</td>
<td>gsvTalkerId</td>
<td>-</td>
<td>By default the Talker ID for GSV messages is GNSS specific (as defined by NMEA). This field enables the GSV Talker ID to be overridden. 0: Use GNSS specific Talker ID (as defined by NMEA) 1: Use the main Talker ID</td>
</tr>
<tr>
<td>11</td>
<td>U1</td>
<td>-</td>
<td>reserved</td>
<td>-</td>
<td>Reserved, always set to 0</td>
</tr>
</tbody>
</table>

Bitfield filter

This Graphic explains the bits of filter

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>trackFilt</td>
<td>timeFilt</td>
<td>dateFilt</td>
<td>mskPosFilt</td>
<td>posFilt</td>
<td>reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>posFilt</td>
<td>Enable position output for failed or invalid fixes</td>
</tr>
<tr>
<td>mskPosFilt</td>
<td>Enable position output for invalid fixes</td>
</tr>
<tr>
<td>timeFilt</td>
<td>Enable time output for invalid times</td>
</tr>
<tr>
<td>dateFilt</td>
<td>Enable date output for invalid dates</td>
</tr>
<tr>
<td>gpsOnlyFilter</td>
<td>Restrict output to GPS satellites only</td>
</tr>
<tr>
<td>trackFilt</td>
<td>Enable COG output even if COG is frozen</td>
</tr>
</tbody>
</table>
Bitfield flags
This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>compat</td>
<td>enable compatibility mode. This might be needed for certain applications when customer’s NMEA parser expects a fixed number of digits in position coordinates</td>
</tr>
<tr>
<td>consider</td>
<td>enable considering mode.</td>
</tr>
</tbody>
</table>

Bitfield gnssToFilter
This Graphic explains the bits of gnssToFilter

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gps</td>
<td>Disable reporting of GPS satellites</td>
</tr>
<tr>
<td>sbas</td>
<td>Disable reporting of SBAS satellites</td>
</tr>
<tr>
<td>qzss</td>
<td>Disable reporting of QZSS satellites</td>
</tr>
<tr>
<td>glonass</td>
<td>Disable reporting of GLONASS satellites</td>
</tr>
</tbody>
</table>

33.11 CFG-NVS (0x06 0x22)
33.11.1 Clear, Save and Load non-volatile storage data

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x22</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X4</td>
<td>-</td>
<td>clearMask</td>
<td>-</td>
<td>Mask of data to be cleared (see graphic below)</td>
</tr>
</tbody>
</table>
CFG-NVS continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>saveMask</td>
<td>-</td>
<td>Mask of data to be saved, uses the same bits as the clearMask</td>
</tr>
<tr>
<td>8</td>
<td>X4</td>
<td>-</td>
<td>loadMask</td>
<td>-</td>
<td>Mask of data to be loaded, uses the same bits as the clearMask</td>
</tr>
<tr>
<td>12</td>
<td>X1</td>
<td>-</td>
<td>deviceMask</td>
<td>-</td>
<td>Mask of devices to consider (default: all devices) (see graphic below)</td>
</tr>
</tbody>
</table>

Bitfield clearMask

This Graphic explains the bits of `clearMask`

| 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|

- **alm**: GPS Almanac data
- **aop**: AOP data

Bitfield deviceMask

This Graphic explains the bits of `deviceMask`

<table>
<thead>
<tr>
<th>4</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

- **devBBR**: built-in battery-backed RAM
- **devFlash**: external flash memory
- **devEEPROM**: external EEPROM
- **devSpiFlash**: external SPI Flash
33.12 CFG-PM2 (0x06 0x3B)

33.12.1 Poll extended Power Management configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-PM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll extended Power Management configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62</td>
</tr>
<tr>
<td>No payload</td>
<td></td>
</tr>
</tbody>
</table>

33.12.2 Extended Power Management configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-PM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Extended Power Management configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62</td>
</tr>
<tr>
<td>Payload Contents:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>version</td>
<td>-</td>
<td>Message version (1 for this version)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>U1</td>
<td>-</td>
<td>reserved2</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>U1</td>
<td>-</td>
<td>reserved3</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>PSM configuration flags (see graphic below)</td>
</tr>
<tr>
<td>8</td>
<td>U4</td>
<td>-</td>
<td>updatePeriod</td>
<td>ms</td>
<td>Position update period. If set to 0, the receiver will never retry a fix</td>
</tr>
<tr>
<td>12</td>
<td>U4</td>
<td>-</td>
<td>searchPeriod</td>
<td>ms</td>
<td>Acquisition retry period. If set to 0, the receiver will never retry a startup</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>gridOffset</td>
<td>ms</td>
<td>Grid offset relative to GPS start of week</td>
</tr>
<tr>
<td>20</td>
<td>U2</td>
<td>-</td>
<td>onTime</td>
<td>s</td>
<td>on time after first successful fix</td>
</tr>
<tr>
<td>22</td>
<td>U2</td>
<td>-</td>
<td>minAcqTime</td>
<td>s</td>
<td>minimal search time</td>
</tr>
<tr>
<td>24</td>
<td>U2</td>
<td>-</td>
<td>reserved4</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>26</td>
<td>U2</td>
<td>-</td>
<td>reserved5</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>28</td>
<td>U4</td>
<td>-</td>
<td>reserved6</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>32</td>
<td>U4</td>
<td>-</td>
<td>reserved7</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>36</td>
<td>U1</td>
<td>-</td>
<td>reserved8</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>37</td>
<td>U1</td>
<td>-</td>
<td>reserved9</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>38</td>
<td>U2</td>
<td>-</td>
<td>reserved10</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>40</td>
<td>U4</td>
<td>-</td>
<td>reserved11</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reserved</td>
<td>Reserved: Must be set to '000'</td>
</tr>
<tr>
<td>extintSelect</td>
<td>EXTINT Pin Select</td>
</tr>
<tr>
<td>0</td>
<td>EXTINT0</td>
</tr>
<tr>
<td>1</td>
<td>EXTINT1</td>
</tr>
<tr>
<td>extintWake</td>
<td>EXTINT Pin Control</td>
</tr>
<tr>
<td>0</td>
<td>disabled</td>
</tr>
<tr>
<td>1</td>
<td>enabled, keep receiver awake as long as selected EXTINT pin is 'high'</td>
</tr>
<tr>
<td>extintBackup</td>
<td>EXTINT Pin Control</td>
</tr>
<tr>
<td>0</td>
<td>disabled</td>
</tr>
<tr>
<td>1</td>
<td>enabled, force receiver into BACKUP mode when selected EXTINT pin is 'low'</td>
</tr>
<tr>
<td>limitPeakCurr</td>
<td>Limit Peak Current</td>
</tr>
<tr>
<td>00</td>
<td>disabled</td>
</tr>
<tr>
<td>01</td>
<td>enabled, peak current is limited</td>
</tr>
<tr>
<td>10</td>
<td>reserved</td>
</tr>
<tr>
<td>11</td>
<td>reserved</td>
</tr>
<tr>
<td>WaitTimeFix</td>
<td>Wait for Timefix</td>
</tr>
<tr>
<td>0</td>
<td>wait for normal Fix ok, before starting on-time</td>
</tr>
<tr>
<td>1</td>
<td>wait for time fix ok, before starting on-time</td>
</tr>
<tr>
<td>updateRTC</td>
<td>Update Real Time Clock</td>
</tr>
<tr>
<td>0</td>
<td>Do not wake-up to update RTC. RTC is updated during normal on-time.</td>
</tr>
<tr>
<td>1</td>
<td>Update RTC. The receiver adds extra wake-up cycles to update the RTC.</td>
</tr>
<tr>
<td>updateEPH</td>
<td>Update Ephemeris</td>
</tr>
<tr>
<td>0</td>
<td>Do not wake-up to update Ephemeris data</td>
</tr>
<tr>
<td>1</td>
<td>Update Ephemeris. The receiver adds extra wake-up cycles to update the Ephemeris data</td>
</tr>
<tr>
<td>doNotEnterOff</td>
<td>Behavior of receiver in case of no fix</td>
</tr>
<tr>
<td>0</td>
<td>receiver enters inactive for search state</td>
</tr>
<tr>
<td>1</td>
<td>receiver does not enter inactive for search state but keeps trying to acquire a fix instead</td>
</tr>
<tr>
<td>mode</td>
<td>Mode of operation</td>
</tr>
<tr>
<td>00</td>
<td>ON/OFF operation</td>
</tr>
<tr>
<td>01</td>
<td>Cyclic tracking operation</td>
</tr>
<tr>
<td>10</td>
<td>reserved</td>
</tr>
<tr>
<td>11</td>
<td>reserved</td>
</tr>
</tbody>
</table>
33.13 CFG-PRT (0x06 0x00)

33.13.1 Polls the configuration of the used I/O Port

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-PRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Polls the configuration of the used I/O Port</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>Polls the configuration of the I/O Port on which this message is received</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x00</td>
<td>0</td>
<td>see below</td>
</tr>
</tbody>
</table>

No payload

33.13.2 Polls the configuration for one I/O Port

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-PRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Polls the configuration for one I/O Port</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>Sending this message with a port ID as payload results in having the receiver return the configuration for the specified port.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x00</td>
<td>1</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>PortID</td>
<td>-</td>
<td>Port Identifier Number (see the other versions of CFG-PRT for valid values)</td>
</tr>
</tbody>
</table>

33.13.3 Port Configuration for UART

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-PRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Port Configuration for UART</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td>Several configurations can be concatenated to one input message. In this case the payload length can be a multiple of the normal length (see the other versions of CFG-PRT). Output messages from the module contain only one configuration unit.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x00</td>
<td>20</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>portID</td>
<td>-</td>
<td>Port Identifier Number (see Serial Communication Ports Description for valid UART port IDs)</td>
</tr>
</tbody>
</table>
CFG-PRT continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>reserved0</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-</td>
<td>txReady</td>
<td>-</td>
<td>TX ready PIN configuration (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>mode</td>
<td>-</td>
<td>A bit mask describing the UART mode (see graphic below)</td>
</tr>
<tr>
<td>8</td>
<td>U4</td>
<td>-</td>
<td>baudRate</td>
<td>Bits/s</td>
<td>Baudrate in bits/second</td>
</tr>
<tr>
<td>12</td>
<td>X2</td>
<td>-</td>
<td>inProtoMask</td>
<td>-</td>
<td>A mask describing which input protocols are active. Each bit of this mask is used for a protocol. Through that, multiple protocols can be defined on a single port. (see graphic below)</td>
</tr>
<tr>
<td>14</td>
<td>X2</td>
<td>-</td>
<td>outProtoMask</td>
<td>-</td>
<td>A mask describing which output protocols are active. Each bit of this mask is used for a protocol. Through that, multiple protocols can be defined on a single port. (see graphic below)</td>
</tr>
<tr>
<td>16</td>
<td>U2</td>
<td>-</td>
<td>reserved4</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>18</td>
<td>U2</td>
<td>-</td>
<td>reserved5</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
</tbody>
</table>

Bitfield txReady

This Graphic explains the bits of txReady

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>en</td>
<td>Enable TX ready feature for this port</td>
</tr>
<tr>
<td>pol</td>
<td>Polarity</td>
</tr>
<tr>
<td></td>
<td>0 High-active</td>
</tr>
<tr>
<td></td>
<td>1 Low-active</td>
</tr>
<tr>
<td>pin</td>
<td>PIO to be used (must not be in use already by another function)</td>
</tr>
<tr>
<td>thres</td>
<td>Threshold</td>
</tr>
<tr>
<td></td>
<td>The given threshold is multiplied by 8 bytes.</td>
</tr>
<tr>
<td></td>
<td>The TX ready PIN goes active after >= thres*8 bytes are pending for the port and going inactive after the last pending bytes have been written to hardware (0-4 bytes before end of stream).</td>
</tr>
<tr>
<td></td>
<td>0x000 no threshold</td>
</tr>
<tr>
<td></td>
<td>0x001 8byte</td>
</tr>
<tr>
<td></td>
<td>0x002 16byte</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>0x1FE 4080byte</td>
</tr>
<tr>
<td></td>
<td>0x1FF 4088byte</td>
</tr>
</tbody>
</table>
Bitfield mode
This Graphic explains the bits of mode

<table>
<thead>
<tr>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>7</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits</td>
<td>parity</td>
<td>charLen</td>
<td>reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reserved1</td>
<td>Default 1 for compatibility with A4</td>
</tr>
<tr>
<td>charLen</td>
<td>Character Length</td>
</tr>
<tr>
<td></td>
<td>00 5bit (not supported)</td>
</tr>
<tr>
<td></td>
<td>01 6bit (not supported)</td>
</tr>
<tr>
<td></td>
<td>10 7bit (supported only with parity)</td>
</tr>
<tr>
<td></td>
<td>11 8bit</td>
</tr>
<tr>
<td>parity</td>
<td>000 Even Parity</td>
</tr>
<tr>
<td></td>
<td>001 Odd Parity</td>
</tr>
<tr>
<td></td>
<td>10X No Parity</td>
</tr>
<tr>
<td></td>
<td>X1X Reserved</td>
</tr>
<tr>
<td>nStopBits</td>
<td>Number of Stop Bits</td>
</tr>
<tr>
<td></td>
<td>00 1 Stop Bit</td>
</tr>
<tr>
<td></td>
<td>01 1.5 Stop Bit</td>
</tr>
<tr>
<td></td>
<td>10 2 Stop Bit</td>
</tr>
<tr>
<td></td>
<td>11 0.5 Stop Bit</td>
</tr>
</tbody>
</table>

Bitfield inProtoMask
This Graphic explains the bits of inProtoMask

Bitfield outProtoMask
This Graphic explains the bits of outProtoMask
33.13.4 Port Configuration for USB Port

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-PRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Port Configuration for USB Port</td>
</tr>
<tr>
<td>Firmware Supported on:</td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td>Several configurations can be concatenated to one input message. In this case the payload length can be a multiple of the normal length (see the other versions of CFG-PRT). Output messages from the module contain only one configuration unit.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x00</td>
<td>20</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>portID</td>
<td>-</td>
<td>Port Identifier Number (= 3 for USB port)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>reserved0</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-</td>
<td>txReady</td>
<td>-</td>
<td>TX ready PIN configuration (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>U4</td>
<td>-</td>
<td>reserved2</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>U4</td>
<td>-</td>
<td>reserved3</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>X2</td>
<td>-</td>
<td>inProtoMask</td>
<td>-</td>
<td>A mask describing which input protocols are active. Each bit of this mask is used for a protocol. Through that, multiple protocols can be defined on a single port. (see graphic below)</td>
</tr>
<tr>
<td>14</td>
<td>X2</td>
<td>-</td>
<td>outProtoMask</td>
<td>-</td>
<td>A mask describing which output protocols are active. Each bit of this mask is used for a protocol. Through that, multiple protocols can be defined on a single port. (see graphic below)</td>
</tr>
<tr>
<td>16</td>
<td>U2</td>
<td>-</td>
<td>reserved4</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>18</td>
<td>U2</td>
<td>-</td>
<td>reserved5</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
</tbody>
</table>

Bitfield txReady

This Graphic explains the bits of txReady

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>enabled</td>
</tr>
<tr>
<td>14</td>
<td>polarity</td>
</tr>
<tr>
<td>13</td>
<td>pin</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>reserved</td>
</tr>
<tr>
<td>2</td>
<td>reserved</td>
</tr>
<tr>
<td>1</td>
<td>reserved</td>
</tr>
<tr>
<td>0</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Bitfield txReady

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>en</td>
<td>Enable TX ready feature for this port</td>
</tr>
<tr>
<td>pol</td>
<td>Polarity</td>
</tr>
<tr>
<td></td>
<td>0 High-active</td>
</tr>
<tr>
<td></td>
<td>1 Low-active</td>
</tr>
<tr>
<td>pin</td>
<td>PIO to be used (must not be in use already by another function)</td>
</tr>
</tbody>
</table>
Bitfield txReady Description continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| thres | Threshold
The given threshold is multiplied by 8 bytes.
The TX ready PIN goes active after >= thres*8 bytes are pending for the port and going inactive after the last pending bytes have been written to hardware (0-4 bytes before end of stream).
0x000 no threshold
0x001 8byte
0x002 16byte
...
0x1FE 4080byte
0x1FF 4088byte |

Bitfield inProtoMask

This Graphic explains the bits of inProtoMask

Bitfield outProtoMask

This Graphic explains the bits of outProtoMask

33.13.5 Port Configuration for SPI Port

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-PRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Port Configuration for SPI Port</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input/Output | | | | | |
| Comment | Several configurations can be concatenated to one input message. In this case the payload length can be a multiple of the normal length (see the other versions of CFG-PRT). Output messages from the module contain only one configuration unit. |
| Message Structure | Header | ID | Length (Bytes) | Payload | Checksum |
| | 0xB5 0x62 | 0x06 0x00 | 20 | see below | CK_A CK_B |
| Payload Contents: | Byte Offset | Number Format | Scaling | Name | Unit | Description |
| | 0 | U1 | - | portID | - | Port Identifier Number (= 4 for SPI port) |
| | 1 | U1 | - | reserved0 | - | Reserved |
CFG-PRT continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>X2</td>
<td>-</td>
<td>txReady</td>
<td>-</td>
<td>TX ready PIN configuration (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>mode</td>
<td>-</td>
<td>SPI Mode Flags (see graphic below)</td>
</tr>
<tr>
<td>8</td>
<td>U4</td>
<td>-</td>
<td>reserved3</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>X2</td>
<td>-</td>
<td>inProtoMask</td>
<td>-</td>
<td>A mask describing which input protocols are active. Each bit of this mask is used for a protocol. Through that, multiple protocols can be defined on a single port. (see graphic below)</td>
</tr>
<tr>
<td>14</td>
<td>X2</td>
<td>-</td>
<td>outProtoMask</td>
<td>-</td>
<td>A mask describing which output protocols are active. Each bit of this mask is used for a protocol. Through that, multiple protocols can be defined on a single port. (see graphic below)</td>
</tr>
<tr>
<td>16</td>
<td>U2</td>
<td>-</td>
<td>reserved4</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>18</td>
<td>U2</td>
<td>-</td>
<td>reserved5</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
</tbody>
</table>

Bitfield txReady
This Graphic explains the bits of txReady

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>en</td>
<td></td>
</tr>
<tr>
<td>pol</td>
<td></td>
</tr>
<tr>
<td>pin</td>
<td></td>
</tr>
<tr>
<td>thres</td>
<td>Threshold The given threshold is multiplied by 8 bytes. The TX ready PIN goes active after >= thres*8 bytes are pending for the port and going inactive after the last pending bytes have been written to hardware (0-4 bytes before end of stream). 0x000 no threshold 0x001 8byte 0x002 16byte ... 0x1FE 4080byte 0x1FF 4088byte</td>
<td></td>
</tr>
</tbody>
</table>

Name	Description
en | Enable TX ready feature for this port
pol | Polarity
 | 0 High-active
 | 1 Low-active
pin | PIO to be used (must not be in use already by another function)
thres | Threshold
 | The given threshold is multiplied by 8 bytes.
 | The TX ready PIN goes active after >= thres*8 bytes are pending for the port and going inactive after the last pending bytes have been written to hardware (0-4 bytes before end of stream).
 | 0x000 no threshold
 | 0x001 8byte
 | 0x002 16byte
 | ...
 | 0x1FE 4080byte
 | 0x1FF 4088byte
Bitfield mode
This Graphic explains the bits of mode

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spiMode</td>
<td>00 SPI Mode 0: CPOL = 0, CPHA = 0</td>
</tr>
<tr>
<td></td>
<td>01 SPI Mode 1: CPOL = 0, CPHA = 1</td>
</tr>
<tr>
<td></td>
<td>10 SPI Mode 2: CPOL = 1, CPHA = 0</td>
</tr>
<tr>
<td></td>
<td>11 SPI Mode 3: CPOL = 1, CPHA = 1</td>
</tr>
<tr>
<td>flowControl</td>
<td>(u-blox 6 only)</td>
</tr>
<tr>
<td></td>
<td>0 Flow control disabled</td>
</tr>
<tr>
<td></td>
<td>1 Flow control enabled (9-bit mode)</td>
</tr>
<tr>
<td>ffCnt</td>
<td>Number of bytes containing 0xFF to receive before switching off reception. Range: 0(mechanism off)-255</td>
</tr>
</tbody>
</table>

Bitfield inProtoMask
This Graphic explains the bits of inProtoMask

Bitfield outProtoMask
This Graphic explains the bits of outProtoMask
33.13.6 Port Configuration for DDC Port

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-PRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Port Configuration for DDC Port</td>
</tr>
</tbody>
</table>
| **Firmware** | Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
<p>| Type | Input/Output |
| Comment | Several configurations can be concatenated to one input message. In this case the payload length can be a multiple of the normal length (see the other versions of CFG-PRT). Output messages from the module contain only one configuration unit. |
| Message Structure |</p>
<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x00</td>
<td>20</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>portID</td>
<td>-</td>
<td>Port Identifier Number (= 0 for DDC port)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>reserved0</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>-</td>
<td>txReady</td>
<td>-</td>
<td>TX ready PIN configuration (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>mode</td>
<td>-</td>
<td>DDC Mode Flags (see graphic below)</td>
</tr>
<tr>
<td>8</td>
<td>U4</td>
<td>-</td>
<td>reserved3</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>12</td>
<td>X2</td>
<td>-</td>
<td>inProtoMask</td>
<td>-</td>
<td>A mask describing which input protocols are active. Each bit of this mask is used for a protocol. Through that, multiple protocols can be defined on a single port. (see graphic below)</td>
</tr>
<tr>
<td>14</td>
<td>X2</td>
<td>-</td>
<td>outProtoMask</td>
<td>-</td>
<td>A mask describing which output protocols are active. Each bit of this mask is used for a protocol. Through that, multiple protocols can be defined on a single port. (see graphic below)</td>
</tr>
<tr>
<td>16</td>
<td>U2</td>
<td>-</td>
<td>reserved4</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>18</td>
<td>U2</td>
<td>-</td>
<td>reserved5</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
</tbody>
</table>

Bitfield txReady

This Graphic explains the bits of txReady

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>en</td>
<td>Enable TX ready feature for this port</td>
</tr>
</tbody>
</table>
| pol | Polarity
0 High-active
1 Low-active |
| pin | PIO to be used (must not be in use already by another function) |
Bitfield txReady Description continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| thres | Threshold
The given threshold is multiplied by 8 bytes.
The TX ready PIN goes active after >= thres*8 bytes are pending for the port and going inactive after the last pending bytes have been written to hardware (0-4 bytes before end of stream).
0x000 no threshold
0x001 8byte
0x002 16byte
...
0x1FE 4080byte
0x1FF 4088byte |

Bitfield mode
This Graphic explains the bits of mode

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| slaveAddr | Slave address
Range: 0x07 < slaveAddr < 0x78. Bit 0 must be 0 |

Bitfield inProtoMask
This Graphic explains the bits of inProtoMask

Bitfield outProtoMask
This Graphic explains the bits of outProtoMask
33.14 CFG-RATE (0x06 0x08)

33.14.1 Poll Navigation/Measurement Rate Settings

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll Navigation/Measurement Rate Settings</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Poll Request |
| Comment | Sending this (empty / no-payload) message to the receiver results in the receiver returning a message of type CFG-RATE with a payload as defined below |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x08</td>
<td>0</td>
<td>see below CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload

33.14.2 Navigation/Measurement Rate Settings

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Navigation/Measurement Rate Settings</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input/Output |
| Comment | The u-blox positioning technology supports navigation update rates higher or lower than 1 update per second. The calculation of the navigation solution will always be aligned to the top of a second.
• The update rate has a direct influence on the power consumption. The more fixes that are required, the more CPU power and communication resources are required.
• For most applications a 1 Hz update rate would be sufficient. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x08</td>
<td>6</td>
<td>see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U2</td>
<td>-</td>
<td>measRate</td>
<td>ms</td>
<td>Measurement Rate, GPS measurements are taken every measRate milliseconds</td>
</tr>
<tr>
<td>2</td>
<td>U2</td>
<td>-</td>
<td>navRate</td>
<td>cycles</td>
<td>Navigation Rate, in number of measurement cycles. This parameter cannot be changed, and must be set to 1.</td>
</tr>
<tr>
<td>4</td>
<td>U2</td>
<td>-</td>
<td>timeRef</td>
<td></td>
<td>Alignment to reference time: 0 = UTC time, 1 = GPS time</td>
</tr>
</tbody>
</table>
33.15 CFG-RINV (0x06 0x34)

33.15.1 Poll contents of Remote Inventory

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-RINV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll contents of Remote Inventory</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x34</td>
<td>0</td>
<td>see below</td>
</tr>
</tbody>
</table>

No payload

33.15.2 Contents of Remote Inventory

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-RINV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Contents of Remote Inventory</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td>If N is greater than 30, the excess bytes are discarded. In future firmware versions, this limit may change.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x34</td>
<td>1 + 1*N</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number</th>
<th>Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X1</td>
<td>-</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>Flags (see graphic below)</td>
</tr>
</tbody>
</table>

Start of repeated block (N times)

| 1 + 1*N | U1 | - | data | - | Data to store/stored in Remote Inventory |

End of repeated block

Bitfield flags

This Graphic explains the bits of flags

| 1 | 0 |

Name	**Description**
dump | Dump data at startup. Does not work if flag binary is set.
binary | Data is binary
33.16 CFG-RST (0x06 0x04)

33.16.1 Reset Receiver / Clear Backup Data Structures

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-RST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Reset Receiver / Clear Backup Data Structures</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on: u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Command</td>
</tr>
</tbody>
</table>

Message Structure

- **Header**
- **ID**
- **Length (Bytes)**
- **Payload**
- **Checksum**

<table>
<thead>
<tr>
<th>Payload Contents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte Offset</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Bitmap navBbrMask

This Graphic explains the bits of navBbrMask

<table>
<thead>
<tr>
<th>15</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>eph</td>
<td>tct</td>
<td>vmc</td>
<td>kivr</td>
<td>rtc</td>
<td>utc</td>
<td>usc</td>
<td>clkf</td>
<td>pos</td>
<td>koc</td>
<td>kbc</td>
<td>health</td>
<td>aln</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eph</td>
<td>Ephemeris</td>
</tr>
<tr>
<td>aln</td>
<td>Almanac</td>
</tr>
<tr>
<td>health</td>
<td>Health</td>
</tr>
<tr>
<td>klob</td>
<td>Klobuchar parameters</td>
</tr>
<tr>
<td>pos</td>
<td>Position</td>
</tr>
<tr>
<td>ctkd</td>
<td>Clock Drift</td>
</tr>
<tr>
<td>osc</td>
<td>Oscillator Parameter</td>
</tr>
<tr>
<td>utc</td>
<td>UTC Correction + GPS Leap Seconds Parameters</td>
</tr>
<tr>
<td>rtc</td>
<td>RTC</td>
</tr>
<tr>
<td>sfdr</td>
<td>SFDR Parameters</td>
</tr>
</tbody>
</table>

GPS.G6-SW-12013 Public Release Page 118 of 168
33.17 CFG-RXM (0x06 0x11)

33.17.1 Poll RXM configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-RXM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll RXM configuration</td>
</tr>
</tbody>
</table>

Firmware: Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type: Poll Request

Comment: Upon sending of this message, the receiver returns CFG-RXM as defined below.

Message Structure:

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x11</td>
<td>0</td>
<td>see below</td>
</tr>
</tbody>
</table>

No payload

33.17.2 RXM configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-RXM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>RXM configuration</td>
</tr>
</tbody>
</table>

Firmware: Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type: Input/Output

Comment: For a detailed description see section Power Management. Note that Power Save Mode cannot be selected when the receiver is configured to process GLONASS signals (using CFG-GNSS).

Message Structure:

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x06 0x11</td>
<td>2</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Always set to 8</td>
</tr>
</tbody>
</table>
| 1 | U1 | - | lpMode | - | Low Power Mode
0: Continuous Mode
1: Power Save Mode
2-3: reserved
4: Continuous Mode
5-255: reserved
Note that for receivers with protocol versions larger or equal 14 both Low Power Mode settings 0 and 4 configure the receiver to Continuous Mode. |
33.18 CFG-SBAS (0x06 0x16)

33.18.1 Poll contents of SBAS Configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-SBAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll contents of SBAS Configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x06 0x16 0 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

33.18.2 SBAS Configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-SBAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>SBAS Configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td>This message configures the SBAS receiver subsystem (i.e. WAAS, EGNOS, MSAS). See the SBAS Configuration Settings Description for a detailed description of how these settings affect receiver operation.</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x06 0x16 8 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X1</td>
<td>-</td>
<td>mode</td>
<td>-</td>
<td>SBAS Mode (see graphic below)</td>
</tr>
<tr>
<td>1</td>
<td>X1</td>
<td>-</td>
<td>usage</td>
<td>-</td>
<td>SBAS Usage (see graphic below)</td>
</tr>
<tr>
<td>2</td>
<td>U1</td>
<td>-</td>
<td>maxSBAS</td>
<td>-</td>
<td>Maximum Number of SBAS prioritized tracking channels (valid range: 0 - 3) to use (obsolete and superseded by UBX-CFG-GNSS in protocol versions 14.00+).</td>
</tr>
<tr>
<td>3</td>
<td>X1</td>
<td>-</td>
<td>scanmode2</td>
<td>-</td>
<td>Continuation of scanmode bitmask below (see graphic below)</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>scanmode1</td>
<td>-</td>
<td>Which SBAS PRN numbers to search for (Bitmask) If all Bits are set to zero, auto-scan (i.e. all valid PRNs) are searched. Every bit corresponds to a PRN number (see graphic below)</td>
</tr>
</tbody>
</table>
Bitfield mode
This Graphic explains the bits of `mode`

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>SBAS Enabled (1) / Disabled (0)</td>
</tr>
<tr>
<td>test</td>
<td>SBAS Testbed: Use data anyhow (1) / Ignore data when in Test Mode (SBAS Msg 0)</td>
</tr>
</tbody>
</table>

Bitfield usage
This Graphic explains the bits of `usage`

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>range</td>
<td>Use SBAS GEOs as a ranging source (for navigation)</td>
</tr>
<tr>
<td>diffCorr</td>
<td>Use SBAS Differential Corrections</td>
</tr>
<tr>
<td>integrity</td>
<td>Use SBAS Integrity Information</td>
</tr>
</tbody>
</table>

Bitfield scanmode2
This Graphic explains the bits of `scanmode2`

Bitfield scanmode1
This Graphic explains the bits of `scanmode1`
33.19 CFG-TP5 (0x06 0x31)

33.19.1 Poll Time Pulse Parameters

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-TP5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll Time Pulse Parameters</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Poll Request |
| Comment | Sending this (empty / no-payload) message to the receiver results in the receiver returning a message of type **CFG-TP5** with a payload as defined below for timepulse 0. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x31</td>
<td>0</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload

33.19.2 Poll Time Pulse Parameters

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-TP5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll Time Pulse Parameters</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Poll Request |
| Comment | Sending this message to the receiver results in the receiver returning a message of type **CFG-TP5** with a payload as defined below for the specified time pulse. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x31</td>
<td>1</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>tpIdx</td>
<td>-</td>
<td>Time pulse selection (0 = TIMEPULSE, 1 = TIMEPULSE2)</td>
</tr>
</tbody>
</table>

33.19.3 Time Pulse Parameters

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-TP5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Time Pulse Parameters</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Input/Output |
| Comment | This message is used to get/set time pulse parameters. For more information see section **Time pulse**. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x06 0x31</td>
<td>32</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>tpIdx</td>
<td>-</td>
<td>Time pulse selection (0 = TIMEPULSE, 1 = TIMEPULSE2)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>reserved0</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
CFG-TP5 continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>U2</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>I2</td>
<td>-</td>
<td>antCableDelay</td>
<td>ns</td>
<td>Antenna cable delay</td>
</tr>
<tr>
<td>6</td>
<td>I2</td>
<td>-</td>
<td>rfGroupDelay</td>
<td>ns</td>
<td>RF group delay</td>
</tr>
<tr>
<td>8</td>
<td>U4</td>
<td>-</td>
<td>freqPeriod</td>
<td>Hz_or_us</td>
<td>Frequency or period time, depending on setting of bit 'isFreq'</td>
</tr>
<tr>
<td>12</td>
<td>U4</td>
<td>-</td>
<td>freqPeriodLock</td>
<td>Hz_or_us</td>
<td>Frequency or period time when locked to GPS time, only used if 'lockedOtherSet' is set</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>pulseLenRatio</td>
<td>us_or_2^-32</td>
<td>Pulse length or duty cycle, depending on 'isLength'</td>
</tr>
<tr>
<td>20</td>
<td>U4</td>
<td>-</td>
<td>pulseLenRatioLock</td>
<td>us_or_2^-32</td>
<td>Pulse length or duty cycle when locked to GPS time, only used if 'lockedOtherSet' is set</td>
</tr>
<tr>
<td>24</td>
<td>I4</td>
<td>-</td>
<td>userConfigDelay</td>
<td>ns</td>
<td>User configurable time pulse delay</td>
</tr>
<tr>
<td>28</td>
<td>X4</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>Configuration flags (see graphic below)</td>
</tr>
</tbody>
</table>

Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>if set enable time pulse; if pin assigned to another function, other function takes precedence</td>
</tr>
<tr>
<td>LockGpsFreq</td>
<td>if set synchronize time pulse to GPS as soon as GPS time is valid, otherwise use local clock</td>
</tr>
<tr>
<td>lockedOtherSet</td>
<td>if set use ‘freqPeriodLock’ and ‘pulseLenRatioLock’ as soon as GPS time is valid and ‘freqPeriod’ and ‘pulseLenRatio’ if GPS time is invalid, if flag is cleared ‘freqPeriod’ and ‘pulseLenRatio’ used regardless of GPS time</td>
</tr>
<tr>
<td>isFreq</td>
<td>if set ‘freqPeriodLock’ and ‘freqPeriod’ interpreted as frequency, otherwise interpreted as period</td>
</tr>
<tr>
<td>isLength</td>
<td>if set ‘pulseLenRatioLock’ and ‘pulseLenRatio’ interpreted as pulse length, otherwise interpreted as duty cycle</td>
</tr>
<tr>
<td>alignToTow</td>
<td>align pulse to top of second (period time must be integer fraction of 1s)</td>
</tr>
<tr>
<td>polarity</td>
<td>pulse polarity: 0 = falling edge at top of second 1 = rising edge at top of second</td>
</tr>
<tr>
<td>gridUtcGps</td>
<td>timegrid to use: 0 = UTC 1 = GPS</td>
</tr>
</tbody>
</table>

GPS.G6-SW-12013 Public Release Page 123 of 168
33.20 CFG-USB (0x06 0x1B)

33.20.1 Poll a USB configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-USB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll a USB configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>Message Structure</td>
<td>0xB5 0x62 0x06 0x1B 0 see below CK_A CK_B</td>
</tr>
<tr>
<td>No payload</td>
<td></td>
</tr>
</tbody>
</table>

33.20.2 USB Configuration

<table>
<thead>
<tr>
<th>Message</th>
<th>CFG-USB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>USB Configuration</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Input/Output</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>Message Structure</td>
<td>0xB5 0x62 0x06 0x1B 108 see below CK_A CK_B</td>
</tr>
<tr>
<td>Payload Contents:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U2</td>
<td>-</td>
<td>vendorID</td>
<td>-</td>
<td>Vendor ID. This field shall only be set to registered Vendor IDs. Changing this field requires special Host drivers.</td>
</tr>
<tr>
<td>2</td>
<td>U2</td>
<td>-</td>
<td>productName</td>
<td>-</td>
<td>Product ID. Changing this field requires special Host drivers.</td>
</tr>
<tr>
<td>4</td>
<td>U2</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Always set to zero</td>
</tr>
<tr>
<td>6</td>
<td>U2</td>
<td>-</td>
<td>reserved2</td>
<td>-</td>
<td>Always set to 1</td>
</tr>
<tr>
<td>8</td>
<td>U2</td>
<td>-</td>
<td>powerConsumption</td>
<td>mA</td>
<td>Power consumed by the device</td>
</tr>
<tr>
<td>10</td>
<td>X2</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>various configuration flags (see graphic below)</td>
</tr>
<tr>
<td>12</td>
<td>CH[32]</td>
<td>-</td>
<td>vendorString</td>
<td>-</td>
<td>String containing the vendor name. 32 ASCII bytes including 0-termination.</td>
</tr>
<tr>
<td>44</td>
<td>CH[32]</td>
<td>-</td>
<td>productName</td>
<td>-</td>
<td>String containing the product name. 32 ASCII bytes including 0-termination.</td>
</tr>
<tr>
<td>76</td>
<td>CH[32]</td>
<td>-</td>
<td>serialNumber</td>
<td>-</td>
<td>String containing the serial number. 32 ASCII bytes including 0-termination. Changing the String fields requires special Host drivers.</td>
</tr>
</tbody>
</table>
Bitfield flags
This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reEnum</td>
<td>force re-enumeration</td>
</tr>
<tr>
<td>powerMode</td>
<td>self-powered (1), bus-powered (0)</td>
</tr>
</tbody>
</table>
34 INF (0x04)

Information Messages: i.e. Printf-Style Messages, with IDs such as Error, Warning, Notice.
The INF Class is basically an output class that allows the firmware and application code to output strings with a
printf-style call. All INF messages have an associated type to indicate the kind of message.

34.1 INF-DEBUG (0x04 0x04)

34.1.1 ASCII String output, indicating debug output

<table>
<thead>
<tr>
<th>Message</th>
<th>INF-DEBUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ASCII String output, indicating debug output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Firmware</th>
<th>Supported on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>This message has a variable length payload, representing an ASCII string.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5</td>
<td>0x62</td>
<td>0x04 0x04</td>
<td>0 + 1*N</td>
<td>see below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payload Contents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte Offset</td>
</tr>
<tr>
<td>Start of repeated block (N times)</td>
</tr>
<tr>
<td>N*1</td>
</tr>
<tr>
<td>End of repeated block</td>
</tr>
</tbody>
</table>

34.2 INF-ERROR (0x04 0x00)

34.2.1 ASCII String output, indicating an error

<table>
<thead>
<tr>
<th>Message</th>
<th>INF-ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ASCII String output, indicating an error</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Firmware</th>
<th>Supported on:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>This message has a variable length payload, representing an ASCII string.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5</td>
<td>0x62</td>
<td>0x04 0x00</td>
<td>0 + 1*N</td>
<td>see below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payload Contents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte Offset</td>
</tr>
<tr>
<td>Start of repeated block (N times)</td>
</tr>
<tr>
<td>N*1</td>
</tr>
<tr>
<td>End of repeated block</td>
</tr>
</tbody>
</table>
34.3 INF-NOTICE (0x04 0x02)

34.3.1 ASCII String output, with informational contents

<table>
<thead>
<tr>
<th>Message</th>
<th>INF-NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ASCII String output, with informational contents</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on: u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output</td>
</tr>
<tr>
<td>Comment</td>
<td>This message has a variable length payload, representing an ASCII string.</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x04 0x02 0 + 1*N see below CK_A CK_B</td>
</tr>
<tr>
<td>Payload Contents:</td>
<td>Byte Offset Number Scaling Name Unit Description</td>
</tr>
<tr>
<td></td>
<td>N*1 CH - str - ASCII Character</td>
</tr>
</tbody>
</table>

34.4 INF-TEST (0x04 0x03)

34.4.1 ASCII String output, indicating test output

<table>
<thead>
<tr>
<th>Message</th>
<th>INF-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ASCII String output, indicating test output</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on: u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output</td>
</tr>
<tr>
<td>Comment</td>
<td>This message has a variable length payload, representing an ASCII string.</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62 0x04 0x03 0 + 1*N see below CK_A CK_B</td>
</tr>
<tr>
<td>Payload Contents:</td>
<td>Byte Offset Number Scaling Name Unit Description</td>
</tr>
<tr>
<td></td>
<td>N*1 CH - str - ASCII Character</td>
</tr>
</tbody>
</table>
34.5 INF-WARNING (0x04 0x01)

34.5.1 ASCII String output, indicating a warning

<table>
<thead>
<tr>
<th>Message</th>
<th>INF-WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>ASCII String output, indicating a warning</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Output</td>
</tr>
<tr>
<td>Comment</td>
<td>This message has a variable length payload, representing an ASCII string.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x04 0x01</td>
<td>0 + 1*N</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N*1</td>
<td>CH</td>
<td>-</td>
<td>ASCII Character</td>
<td>-</td>
<td>ASCII Character</td>
</tr>
</tbody>
</table>

End of repeated block
35 MON (0x0A)

Monitoring Messages: i.e. Communication Status, CPU Load, Stack Usage, Task Status.
Messages in this class are sent to report GPS receiver status, such as CPU load, stack usage, I/O subsystem statistics etc.

35.1 MON-HW2 (0x0A 0x0B)

35.1.1 Extended Hardware Status

<table>
<thead>
<tr>
<th>Message</th>
<th>MON-HW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Extended Hardware Status</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/P polled</td>
</tr>
<tr>
<td>Comment</td>
<td>Status of different aspects of the hardware such as Imbalance, Low-Level Configuration and POST Results. The first four parameters of this message represent the complex signal from the RF front end. The following rules of thumb apply:</td>
</tr>
<tr>
<td></td>
<td>• The smaller the absolute value of the variable ofsI and ofsQ respectively, the better.</td>
</tr>
<tr>
<td></td>
<td>• Ideally, the magnitude of the I-part (magI) and the Q-part (magQ) of the complex signal should be the same.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Payload Contents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
</tr>
<tr>
<td>0xB5</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I1</td>
<td>-</td>
<td>ofsI</td>
<td>-</td>
<td>Imbalance of I-part of complex signal, scaled (-128 = max. negative imbalance, 127 = max. positive imbalance)</td>
</tr>
<tr>
<td>1</td>
<td>U1</td>
<td>-</td>
<td>magI</td>
<td>-</td>
<td>Magnitude of I-part of complex signal, scaled (0 = no signal, 255 = max. magnitude)</td>
</tr>
<tr>
<td>2</td>
<td>I1</td>
<td>-</td>
<td>ofsQ</td>
<td>-</td>
<td>Imbalance of Q-part of complex signal, scaled (-128 = max. negative imbalance, 127 = max. positive imbalance)</td>
</tr>
<tr>
<td>3</td>
<td>U1</td>
<td>-</td>
<td>magQ</td>
<td>-</td>
<td>Magnitude of Q-part of complex signal, scaled (0 = no signal, 255 = max. magnitude)</td>
</tr>
<tr>
<td>4</td>
<td>U1[3]</td>
<td>-</td>
<td>cfgSource</td>
<td>-</td>
<td>Source of low-level configuration (114 = ROM, 111 = OTP, 112 = config pins, 102 = flash image)</td>
</tr>
<tr>
<td>5</td>
<td>U1[3]</td>
<td>-</td>
<td>reserved0</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>U4</td>
<td>-</td>
<td>lowLevCfg</td>
<td>-</td>
<td>Low-level configuration</td>
</tr>
<tr>
<td>12</td>
<td>U4[2]</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>20</td>
<td>U4</td>
<td>-</td>
<td>postStatus</td>
<td>-</td>
<td>POST status word</td>
</tr>
<tr>
<td>24</td>
<td>U4</td>
<td>-</td>
<td>reserved2</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
35.2 MON-HW (0x0A 0x09)

35.2.1 Hardware Status

<table>
<thead>
<tr>
<th>Message</th>
<th>MON-HW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Hardware Status</td>
</tr>
<tr>
<td>Firmware Supported on:</td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>Status of different aspect of the hardware, such as Antenna, PIO/Peripheral Pins, Noise Level, Automatic Gain Control (AGC)</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x0A 0x09</td>
<td>68</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X4</td>
<td>-</td>
<td>pinSel</td>
<td>-</td>
<td>Mask of Pins Set as Peripheral/PIO</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>pinBank</td>
<td>-</td>
<td>Mask of Pins Set as Bank A/B</td>
</tr>
<tr>
<td>8</td>
<td>X4</td>
<td>-</td>
<td>pinDir</td>
<td>-</td>
<td>Mask of Pins Set as Input/Output</td>
</tr>
<tr>
<td>12</td>
<td>X4</td>
<td>-</td>
<td>pinVal</td>
<td>-</td>
<td>Mask of Pins Value Low/High</td>
</tr>
<tr>
<td>16</td>
<td>U2</td>
<td>-</td>
<td>noisePerMS</td>
<td>-</td>
<td>Noise Level as measured by the GPS Core</td>
</tr>
<tr>
<td>18</td>
<td>U2</td>
<td>-</td>
<td>agcCnt</td>
<td>-</td>
<td>AGC Monitor (counts SIGHI xor SIGLO, range 0 to 8191)</td>
</tr>
<tr>
<td>20</td>
<td>U1</td>
<td>-</td>
<td>aStatus</td>
<td>-</td>
<td>Status of the Antenna Supervisor State Machine (0=INIT, 1=DONTKNOW, 2=OK, 3=SHORT, 4=OPEN)</td>
</tr>
<tr>
<td>21</td>
<td>U1</td>
<td>-</td>
<td>aPower</td>
<td>-</td>
<td>Current PowerStatus of Antenna (0=OFF, 1=ON, 2=DONTKNOW)</td>
</tr>
<tr>
<td>22</td>
<td>X1</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>Flags (see graphic below)</td>
</tr>
<tr>
<td>23</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>24</td>
<td>X4</td>
<td>-</td>
<td>usedMask</td>
<td>-</td>
<td>Mask of Pins that are used by the Virtual Pin Manager</td>
</tr>
<tr>
<td>28</td>
<td>U1[25]</td>
<td>-</td>
<td>VP</td>
<td>-</td>
<td>Array of Pin Mappings for each of the 25 Physical Pins</td>
</tr>
<tr>
<td>53</td>
<td>U1</td>
<td>-</td>
<td>jamInd</td>
<td>-</td>
<td>CW Jamming indicator, scaled (0 = no CW jamming, 255 = strong CW jamming)</td>
</tr>
<tr>
<td>54</td>
<td>U2</td>
<td>-</td>
<td>reserved3</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>56</td>
<td>X4</td>
<td>-</td>
<td>pinIrq</td>
<td>-</td>
<td>Mask of Pins Value using the PIO Irq</td>
</tr>
<tr>
<td>60</td>
<td>X4</td>
<td>-</td>
<td>pullH</td>
<td>-</td>
<td>Mask of Pins Value using the PIO Pull High Resistor</td>
</tr>
<tr>
<td>64</td>
<td>X4</td>
<td>-</td>
<td>pullL</td>
<td>-</td>
<td>Mask of Pins Value using the PIO Pull Low Resistor</td>
</tr>
</tbody>
</table>
Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rtcCalib</td>
<td>RTC is calibrated</td>
</tr>
<tr>
<td>safeBoot</td>
<td>safeBoot mode (0 = inactive, 1 = active)</td>
</tr>
<tr>
<td>jammingState</td>
<td>output from Jamming/Interference Monitor (0 = unknown or feature disabled, 1 = ok - no significant jamming, 2 = warning - interference visible but fix OK, 3 = critical - interference visible and no fix)</td>
</tr>
</tbody>
</table>

35.3 MON-IO (0x0A 0x02)

35.3.1 I/O Subsystem Status

<table>
<thead>
<tr>
<th>Message</th>
<th>MON-IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>I/O Subsystem Status</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>The size of the message is determined by the number of ports ‘N’ the receiver supports, i.e. on u-blox 5 the number of ports is 6.</td>
</tr>
</tbody>
</table>

Header	0xB5 0x62
Length (Bytes)	0x0A 0x02
Payload	0 + 20*N
Checksum	see below CK_A CK_B

Payload Contents:

<table>
<thead>
<tr>
<th>Start of repeated block (N times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Format</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>N*20</td>
</tr>
<tr>
<td>4 + 20*N</td>
</tr>
<tr>
<td>8 + 20*N</td>
</tr>
<tr>
<td>10 + 20*N</td>
</tr>
<tr>
<td>12 + 20*N</td>
</tr>
<tr>
<td>14 + 20*N</td>
</tr>
<tr>
<td>16 + 20*N</td>
</tr>
<tr>
<td>17 + 20*N</td>
</tr>
<tr>
<td>18 + 20*N</td>
</tr>
</tbody>
</table>
35.4 MON-MSGPP (0x0A 0x06)

35.4.1 Message Parse and Process Status

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message</td>
<td>MON-MSGPP</td>
</tr>
<tr>
<td>Description</td>
<td>Message Parse and Process Status</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Structure</td>
<td>0xB5 0x62 0x0A 0x06 120 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U2[8]</td>
<td>-</td>
<td>msg1</td>
<td>msgs</td>
<td>Number of successfully parsed messages for each protocol on target0</td>
</tr>
<tr>
<td>16</td>
<td>U2[8]</td>
<td>-</td>
<td>msg2</td>
<td>msgs</td>
<td>Number of successfully parsed messages for each protocol on target1</td>
</tr>
<tr>
<td>32</td>
<td>U2[8]</td>
<td>-</td>
<td>msg3</td>
<td>msgs</td>
<td>Number of successfully parsed messages for each protocol on target2</td>
</tr>
<tr>
<td>48</td>
<td>U2[8]</td>
<td>-</td>
<td>msg4</td>
<td>msgs</td>
<td>Number of successfully parsed messages for each protocol on target3</td>
</tr>
<tr>
<td>64</td>
<td>U2[8]</td>
<td>-</td>
<td>msg5</td>
<td>msgs</td>
<td>Number of successfully parsed messages for each protocol on target4</td>
</tr>
<tr>
<td>80</td>
<td>U2[8]</td>
<td>-</td>
<td>msg6</td>
<td>msgs</td>
<td>Number of successfully parsed messages for each protocol on target5</td>
</tr>
<tr>
<td>96</td>
<td>U4[6]</td>
<td>-</td>
<td>skipped</td>
<td>bytes</td>
<td>Number skipped bytes for each target</td>
</tr>
</tbody>
</table>

35.5 MON-RXBUF (0x0A 0x07)

35.5.1 Receiver Buffer Status

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message</td>
<td>MON-RXBUF</td>
</tr>
<tr>
<td>Description</td>
<td>Receiver Buffer Status</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Structure</td>
<td>0xB5 0x62 0x0A 0x07 24 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U2[6]</td>
<td>-</td>
<td>pending</td>
<td>bytes</td>
<td>Number of bytes pending in receiver buffer for each target</td>
</tr>
<tr>
<td>12</td>
<td>U1[6]</td>
<td>-</td>
<td>usage</td>
<td>%</td>
<td>Maximum usage receiver buffer during the last sysmon period for each target</td>
</tr>
<tr>
<td>18</td>
<td>U1[6]</td>
<td>-</td>
<td>peakUsage</td>
<td>%</td>
<td>Maximum usage receiver buffer for each target</td>
</tr>
</tbody>
</table>
35.6 MON-RXR (0x0A 0x21)

35.6.1 Receiver Status Information

<table>
<thead>
<tr>
<th>Message</th>
<th>MON-RXR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Receiver Status Information</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
<p>| Type | Output |
| Comment | The receiver ready message is sent when the receiver changes from or to backup mode. |
| Message Structure |</p>
<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x0A 0x21</td>
<td>1</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X1</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>Receiver status flags (see graphic below)</td>
</tr>
</tbody>
</table>

Bitfield flags

This Graphic explains the bits of flags

```
awake
```

Name Description
awake not in Backup mode

35.7 MON-TXBUF (0x0A 0x08)

35.7.1 Transmitter Buffer Status

<table>
<thead>
<tr>
<th>Message</th>
<th>MON-TXBUF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Transmitter Buffer Status</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
<p>| Type | Periodic/Pollled |
| Comment | - |
| Message Structure |</p>
<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x0A 0x08</td>
<td>28</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U2[6]</td>
<td>-</td>
<td>pending</td>
<td>bytes</td>
<td>Number of bytes pending in transmitter buffer for each target</td>
</tr>
<tr>
<td>12</td>
<td>U1[6]</td>
<td>-</td>
<td>usage</td>
<td>%</td>
<td>Maximum usage transmitter buffer during the last sysmon period for each target</td>
</tr>
<tr>
<td>18</td>
<td>U1[6]</td>
<td>-</td>
<td>peakUsage</td>
<td>%</td>
<td>Maximum usage transmitter buffer for each target</td>
</tr>
</tbody>
</table>
MON-TXBUF continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>U1</td>
<td>-</td>
<td>tUsage</td>
<td>%</td>
<td>Maximum usage of transmitter buffer during the last sysmon period for all targets</td>
</tr>
<tr>
<td>25</td>
<td>U1</td>
<td>-</td>
<td>tPeakUsage</td>
<td>%</td>
<td>Maximum usage of transmitter buffer for all targets</td>
</tr>
<tr>
<td>26</td>
<td>X1</td>
<td>-</td>
<td>errors</td>
<td>-</td>
<td>Error bitmask (see graphic below)</td>
</tr>
<tr>
<td>27</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Bitfield errors
This Graphic explains the bits of `errors`

```
7 6 5 4 3 2 1 0
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>Buffer limit of corresponding target reached</td>
</tr>
<tr>
<td>mem</td>
<td>Memory Allocation error</td>
</tr>
<tr>
<td>alloc</td>
<td>Allocation error (TX buffer full)</td>
</tr>
</tbody>
</table>

35.8 MON-VER (0x0A 0x04)

35.8.1 Poll Receiver/Software Version

<table>
<thead>
<tr>
<th>Message</th>
<th>MON-VER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Poll Receiver/Software Version</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Poll Request</td>
</tr>
<tr>
<td>Comment</td>
<td>-</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header ID Length (Bytes) Payload Checksum</td>
</tr>
<tr>
<td></td>
<td>0xB5 0xA 0x04 0 see below CK_A CK_B</td>
</tr>
</tbody>
</table>

No payload
35.8.2 Receiver/Software Version

<table>
<thead>
<tr>
<th>Message</th>
<th>MON-VER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Receiver/Software Version</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
 - u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Answer to Poll |

Message Structure

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5</td>
<td>0x62</td>
<td>0x0A 0x04</td>
<td>40 + 30*N</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
</table>

If the receiver’s firmware is running from flash, the first extension field will contain the Software Version String of the underlying ROM. Additional fields may also indicate the supported protocol version and any product variants, capabilities or extensions.
36 NAV (0x01)

Navigation Results: i.e. Position, Speed, Time, Acc, Heading, DOP, SVs used.
Messages in the NAV Class output Navigation Data such as position, altitude and velocity in a number of formats. Additionally, status flags and accuracy figures are output.

36.1 NAV-CLOCK (0x01 0x22)

36.1.1 Clock Solution

<table>
<thead>
<tr>
<th>Message</th>
<th>NAV-CLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Clock Solution</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on: • u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
</tbody>
</table>

Message Structure

```
0xB5 0x62 0x01 0x22 20
```

**Payload Contents:*

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>clkB</td>
<td>ns</td>
<td>Clock bias</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>clkD</td>
<td>ns/s</td>
<td>Clock drift</td>
</tr>
<tr>
<td>12</td>
<td>U4</td>
<td>-</td>
<td>tAcc</td>
<td>ns</td>
<td>Time accuracy estimate</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>fAcc</td>
<td>ps/s</td>
<td>Frequency accuracy estimate</td>
</tr>
</tbody>
</table>

36.2 NAV-DGPS (0x01 0x31)

36.2.1 DGPS Data Used for NAV

<table>
<thead>
<tr>
<th>Message</th>
<th>NAV-DGPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>DGPS Data Used for NAV</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on: • u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
</tbody>
</table>

Message Structure

```
0xB5 0x62 0x01 0x31 16 + 12*numCh
```

Payload Contents:*

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>age</td>
<td>ms</td>
<td>Age of newest correction data</td>
</tr>
<tr>
<td>8</td>
<td>I2</td>
<td>-</td>
<td>baseId</td>
<td>-</td>
<td>DGPS basestation identifier</td>
</tr>
<tr>
<td>10</td>
<td>I2</td>
<td>-</td>
<td>baseHealth</td>
<td>-</td>
<td>DGPS basestation health status</td>
</tr>
<tr>
<td>12</td>
<td>U1</td>
<td>-</td>
<td>numCh</td>
<td>-</td>
<td>Number of channels for which correction data is following</td>
</tr>
</tbody>
</table>
NAV-DGPS continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>U1</td>
<td>-</td>
<td>status</td>
<td></td>
<td>DGPS correction type status: 0x00: none 0x01: PR+PRR correction</td>
</tr>
<tr>
<td>14</td>
<td>U2</td>
<td>-</td>
<td>reserved1</td>
<td></td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Start of repeated block (numCh times)

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 + 12*N</td>
<td>U1</td>
<td>-</td>
<td>svid</td>
<td></td>
<td>Satellite ID</td>
</tr>
<tr>
<td>17 + 12*N</td>
<td>X1</td>
<td>-</td>
<td>flags</td>
<td></td>
<td>Channel number and usage (see graphic below)</td>
</tr>
<tr>
<td>18 + 12*N</td>
<td>U2</td>
<td>-</td>
<td>ageC</td>
<td>ms</td>
<td>Age of latest correction data</td>
</tr>
<tr>
<td>20 + 12*N</td>
<td>R4</td>
<td>-</td>
<td>prc</td>
<td>m</td>
<td>Pseudorange correction</td>
</tr>
<tr>
<td>24 + 12*N</td>
<td>R4</td>
<td>-</td>
<td>prrc</td>
<td>m/s</td>
<td>Pseudorange rate correction</td>
</tr>
</tbody>
</table>

End of repeated block

Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>channel</td>
</tr>
<tr>
<td>1</td>
<td>dgpsUsed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel</td>
<td>GPS channel number this SV is on</td>
</tr>
<tr>
<td>dgpsUsed</td>
<td>1 = DGPS used for this SV</td>
</tr>
</tbody>
</table>

36.3 NAV-DOP (0x01 0x04)

36.3.1 Dilution of precision

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAV-DOP</td>
<td>Dilution of precision</td>
</tr>
</tbody>
</table>

Firmware

Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

Periodic/Polled

Comment

- DOP values are dimensionless.
- All DOP values are scaled by a factor of 100. If the unit transmits a value of e.g. 156, the DOP value is 1.56.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x01 0x04</td>
<td></td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>U2</td>
<td>0.01</td>
<td>gDOP</td>
<td></td>
<td>Geometric DOP</td>
</tr>
<tr>
<td>6</td>
<td>U2</td>
<td>0.01</td>
<td>pDOP</td>
<td></td>
<td>Position DOP</td>
</tr>
</tbody>
</table>
36.4 NAV-POSECEF (0x01 0x01)

36.4.1 Position Solution in ECEF

Message

NAV-POSECEF

Description

Position Solution in ECEF

Firmware

Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

Periodic/Polled

Comment

See important comments concerning validity of position given in section Navigation Output Filters.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x01 0x01</td>
<td>20</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>ecefX</td>
<td>cm</td>
<td>ECEF X coordinate</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>ecefY</td>
<td>cm</td>
<td>ECEF Y coordinate</td>
</tr>
<tr>
<td>12</td>
<td>I4</td>
<td>-</td>
<td>ecefZ</td>
<td>cm</td>
<td>ECEF Z coordinate</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>pAcc</td>
<td>cm</td>
<td>Position Accuracy Estimate</td>
</tr>
</tbody>
</table>

36.5 NAV-POSLLH (0x01 0x02)

36.5.1 Geodetic Position Solution

Message

NAV-POSLLH

Description

Geodetic Position Solution

Firmware

Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

Periodic/Polled

Comment

See important comments concerning validity of position given in section Navigation Output Filters.

This message outputs the Geodetic position in the currently selected ellipsoid. The default is the WGS84 Ellipsoid, but can be changed with the message CFG-DAT.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x01 0x02</td>
<td>28</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>ecefX</td>
<td>cm</td>
<td>ECEF X coordinate</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>ecefY</td>
<td>cm</td>
<td>ECEF Y coordinate</td>
</tr>
<tr>
<td>12</td>
<td>I4</td>
<td>-</td>
<td>ecefZ</td>
<td>cm</td>
<td>ECEF Z coordinate</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>pAcc</td>
<td>cm</td>
<td>Position Accuracy Estimate</td>
</tr>
</tbody>
</table>
36.6 NAV-PVT (0x01 0x07)

36.6.1 Navigation Position Velocity Time Solution

Message

NAV-PVT

Description

Navigation Position Velocity Time Solution

Firmware

Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type

Periodic/Polled

Comment

Note that during a leap second there may be more (or less) than 60 seconds in a minute; see the description of leap seconds for details.

This message combines position, velocity and time solution, including accuracy figures.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x01 0x07</td>
<td>84</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>1e-7</td>
<td>lon</td>
<td>deg</td>
<td>Longitude</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>1e-7</td>
<td>lat</td>
<td>deg</td>
<td>Latitude</td>
</tr>
<tr>
<td>12</td>
<td>I4</td>
<td>-</td>
<td>height</td>
<td>mm</td>
<td>Height above ellipsoid</td>
</tr>
<tr>
<td>16</td>
<td>I4</td>
<td>-</td>
<td>height</td>
<td>mm</td>
<td>Height above mean sea level</td>
</tr>
<tr>
<td>20</td>
<td>U4</td>
<td>-</td>
<td>hAcc</td>
<td>mm</td>
<td>Horizontal accuracy estimate</td>
</tr>
<tr>
<td>24</td>
<td>U4</td>
<td>-</td>
<td>vAcc</td>
<td>mm</td>
<td>Vertical accuracy estimate</td>
</tr>
<tr>
<td>4</td>
<td>U2</td>
<td>-</td>
<td>year</td>
<td>y</td>
<td>Year (UTC)</td>
</tr>
<tr>
<td>6</td>
<td>U1</td>
<td>-</td>
<td>month</td>
<td>month</td>
<td>Month, range 1..12 (UTC)</td>
</tr>
<tr>
<td>7</td>
<td>U1</td>
<td>-</td>
<td>day</td>
<td>d</td>
<td>Day of month, range 1..31 (UTC)</td>
</tr>
<tr>
<td>8</td>
<td>U1</td>
<td>-</td>
<td>hour</td>
<td>h</td>
<td>Hour of day, range 0..23 (UTC)</td>
</tr>
<tr>
<td>9</td>
<td>U1</td>
<td>-</td>
<td>min</td>
<td>min</td>
<td>Minute of hour, range 0..59 (UTC)</td>
</tr>
<tr>
<td>10</td>
<td>U1</td>
<td>-</td>
<td>sec</td>
<td>s</td>
<td>Seconds of minute, range 0..60 (UTC)</td>
</tr>
<tr>
<td>11</td>
<td>X1</td>
<td>-</td>
<td>valid</td>
<td>-</td>
<td>Validity Flags (see graphic below)</td>
</tr>
<tr>
<td>12</td>
<td>U4</td>
<td>-</td>
<td>tAcc</td>
<td>ns</td>
<td>Time accuracy estimate (UTC)</td>
</tr>
<tr>
<td>16</td>
<td>I4</td>
<td>-</td>
<td>nano</td>
<td>ns</td>
<td>Fraction of second, range -1e9 .. 1e9 (UTC)</td>
</tr>
</tbody>
</table>
Bitfield valid

This Graphic explains the bits of valid

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>validDate</td>
<td>1 = Valid UTC Date</td>
</tr>
<tr>
<td>validTime</td>
<td>1 = Valid UTC Time of Day</td>
</tr>
<tr>
<td>fullyResolved</td>
<td>1 = UTC Time of Day has been fully resolved (no seconds uncertainty)</td>
</tr>
</tbody>
</table>
Bitfield flags
This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnssFixOK</td>
<td>A valid fix (i.e within DOP & accuracy masks)</td>
</tr>
<tr>
<td>diffSoln</td>
<td>1 if differential corrections were applied</td>
</tr>
<tr>
<td>psmState</td>
<td>Power Save Mode state (see Power Management):</td>
</tr>
<tr>
<td></td>
<td>0 = n/a (i.e no PSM is active)</td>
</tr>
<tr>
<td></td>
<td>1 = ENABLED (an intermediate state before ACQUISITION state)</td>
</tr>
<tr>
<td></td>
<td>2 = ACQUISITION</td>
</tr>
<tr>
<td></td>
<td>3 = TRACKING</td>
</tr>
<tr>
<td></td>
<td>4 = POWER OPTIMIZED TRACKING</td>
</tr>
<tr>
<td></td>
<td>5 = INACTIVE</td>
</tr>
</tbody>
</table>

36.7 NAV-SBAS (0x01 0x32)

36.7.1 SBAS Status Data

<table>
<thead>
<tr>
<th>Message</th>
<th>NAV-SBAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>SBAS Status Data</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>This message outputs the status of the SBAS sub system</td>
</tr>
</tbody>
</table>

<p>| Payload Contents: |</p>
<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x01 0x32</td>
<td>12 + 12*cnt</td>
<td>see below</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payload Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>U1</td>
<td>-</td>
<td>geo</td>
<td>-</td>
<td>PRN Number of the GEO where correction and integrity data is used from</td>
</tr>
<tr>
<td>5</td>
<td>U1</td>
<td>-</td>
<td>mode</td>
<td>-</td>
<td>SBAS Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1 Enabled Integrity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3 Enabled Testmode</td>
</tr>
<tr>
<td>6</td>
<td>I1</td>
<td>-</td>
<td>sys</td>
<td>-</td>
<td>SBAS System (WAAS/EGNOS/...)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>WAAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>EGNOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MSAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>GPS</td>
</tr>
<tr>
<td>7</td>
<td>X1</td>
<td>-</td>
<td>service</td>
<td>-</td>
<td>SBAS Services available (see graphic below)</td>
</tr>
</tbody>
</table>
NAV-SBAS continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>U1</td>
<td>-</td>
<td>cnt</td>
<td></td>
<td>Number of SV data following</td>
</tr>
<tr>
<td>9</td>
<td>U1[3]</td>
<td>-</td>
<td>reserved0</td>
<td></td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Start of repeated block (cnt times)

12 + 12*N	U1	-	svid	-	SV Id
13 + 12*N	U1	-	flags	-	Flags for this SV
14 + 12*N	U1	-	udre	-	Monitoring status
15 + 12*N	U1	-	svSys	-	System (WAAS/EGNOS/...) same as SYS
16 + 12*N	U1	-	svService	-	Services available same as SERVICE
17 + 12*N	U1	-	reserved1	-	Reserved
18 + 12*N	I2	-	prc	cm	Pseudo Range correction in [cm]
20 + 12*N	U2	-	reserved2	-	Reserved
22 + 12*N	I2	-	ic	cm	Ionosphere correction in [cm]

End of repeated block

Bitfield service
This Graphic explains the bits of service

![Bitfield service diagram]

36.8 NAV-SOL (0x01 0x06)
36.8.1 Navigation Solution Information

<table>
<thead>
<tr>
<th>Message</th>
<th>NAV-SOL</th>
</tr>
</thead>
</table>

Description
Navigation Solution Information

Firmware
Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type
Periodic/Polled

Comment
This message combines position, velocity and time solution in ECEF, including accuracy figures. This message has only been retained for backwards compatibility; users are recommended to use the **UBX-NAV-PVT** message in preference.

Message Structure

<table>
<thead>
<tr>
<th>Header ID Length (Bytes)</th>
<th>Payload Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62 0x01 0x06</td>
<td>52</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
</table>
NAV-SOL continued

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>fTOW</td>
<td>ns</td>
<td>Fractional part of iTOW (range: +/-500000). The precise GPS time of week in seconds is: ((iTOW * 1e^{-3}) + (fTOW * 1e^{-9}))</td>
</tr>
<tr>
<td>8</td>
<td>I2</td>
<td>-</td>
<td>week</td>
<td>weeks</td>
<td>GPS week number of the navigation epoch</td>
</tr>
<tr>
<td>10</td>
<td>U1</td>
<td>-</td>
<td>gpsFix</td>
<td>-</td>
<td>GPSfix Type, range 0..5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x00 = No Fix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x01 = Dead Reckoning only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x02 = 2D-Fix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x03 = 3D-Fix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x04 = GPS + dead reckoning combined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x05 = Time only fix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0x06..0xff: reserved</td>
</tr>
<tr>
<td>11</td>
<td>X1</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>Fix Status Flags (see graphic below)</td>
</tr>
<tr>
<td>12</td>
<td>I4</td>
<td>-</td>
<td>ecefX</td>
<td>cm</td>
<td>ECEF X coordinate</td>
</tr>
<tr>
<td>16</td>
<td>I4</td>
<td>-</td>
<td>ecefY</td>
<td>cm</td>
<td>ECEF Y coordinate</td>
</tr>
<tr>
<td>20</td>
<td>I4</td>
<td>-</td>
<td>ecefZ</td>
<td>cm</td>
<td>ECEF Z coordinate</td>
</tr>
<tr>
<td>24</td>
<td>U4</td>
<td>-</td>
<td>pAcc</td>
<td>cm</td>
<td>3D Position Accuracy Estimate</td>
</tr>
<tr>
<td>28</td>
<td>I4</td>
<td>-</td>
<td>ecefVX</td>
<td>cm/s</td>
<td>ECEF X velocity</td>
</tr>
<tr>
<td>32</td>
<td>I4</td>
<td>-</td>
<td>ecefVY</td>
<td>cm/s</td>
<td>ECEF Y velocity</td>
</tr>
<tr>
<td>36</td>
<td>I4</td>
<td>-</td>
<td>ecefVZ</td>
<td>cm/s</td>
<td>ECEF Z velocity</td>
</tr>
<tr>
<td>40</td>
<td>U4</td>
<td>-</td>
<td>sAcc</td>
<td>cm/s</td>
<td>Speed Accuracy Estimate</td>
</tr>
<tr>
<td>44</td>
<td>U2</td>
<td>0.01</td>
<td>pDOP</td>
<td>-</td>
<td>Position DOP</td>
</tr>
<tr>
<td>46</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>47</td>
<td>U1</td>
<td>-</td>
<td>numSV</td>
<td>-</td>
<td>Number of SVs used in Nav Solution</td>
</tr>
<tr>
<td>48</td>
<td>U4</td>
<td>-</td>
<td>reserved2</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPSfixOK</td>
<td>>1 = Fix within limits (e.g. DOP & accuracy)</td>
</tr>
<tr>
<td>DiffSoln</td>
<td>1 = DGPS used</td>
</tr>
<tr>
<td>WRNSET</td>
<td>1 = Valid GPS week number</td>
</tr>
<tr>
<td>TOWSET</td>
<td>1 = Valid GPS time of week (iTOW & fTOW)</td>
</tr>
</tbody>
</table>
36.9 NAV-STATUS (0x01 0x03)

36.9.1 Receiver Navigation Status

<table>
<thead>
<tr>
<th>Message</th>
<th>NAV-STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Receiver Navigation Status</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
 - u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Periodic/Polled |
| Comment | See important comments concerning validity of position and velocity given in section Navigation Output Filters. |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x01</td>
<td>0x03</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td></td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
</tbody>
</table>
| 4 | U1 | | gpsFix | - | GPSfix Type, this value does not qualify a fix as valid and within the limits. See note on flag gpsFixOk below.
 0x00 = no fix
 0x01 = dead reckoning only
 0x02 = 2D-fix
 0x03 = 3D-fix
 0x04 = GPS + dead reckoning combined
 0x05 = Time only fix
 0x06..0xff = reserved |
| 5 | X1 | | flags | - | Navigation Status Flags (see graphic below) |
| 6 | X1 | | fixStat | - | Fix Status Information (see graphic below) |
| 7 | X1 | | flags2 | - | further information about navigation output (see graphic below) |
| 8 | U4 | | ttfff | - | Time to first fix (millisecond time tag) |
| 12 | U4 | | msss | - | Milliseconds since Startup / Reset |

Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>signed value</td>
</tr>
<tr>
<td>1</td>
<td>reserved</td>
</tr>
<tr>
<td>2</td>
<td>reserved</td>
</tr>
<tr>
<td>3</td>
<td>diffSoln</td>
</tr>
<tr>
<td>4</td>
<td>gpsFixOk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpsFixOk</td>
<td>position and velocity valid and within DOP and ACC Masks, see also important comments in section Navigation Output Filters.</td>
</tr>
<tr>
<td>diffSoln</td>
<td>1 if DGPS used</td>
</tr>
</tbody>
</table>
Bitfield flags Description continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wknSet</td>
<td>1 if Week Number valid</td>
</tr>
<tr>
<td>towSet</td>
<td>1 if Time of Week valid</td>
</tr>
</tbody>
</table>

Bitfield fixStat

This Graphic explains the bits of fixStat

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dgpsIStat</td>
<td>DGPS Input Status</td>
</tr>
<tr>
<td></td>
<td>0: none</td>
</tr>
<tr>
<td></td>
<td>1: PR+PRR Correction</td>
</tr>
<tr>
<td>mapMatching</td>
<td>map matching status, see section Map Matching Input for details.</td>
</tr>
<tr>
<td></td>
<td>00: none</td>
</tr>
<tr>
<td></td>
<td>01: valid, i.e. map matching data was received, but was too old</td>
</tr>
<tr>
<td></td>
<td>10: used, map matching data was applied</td>
</tr>
<tr>
<td></td>
<td>11: DR, map matching was the reason to enable the dead reckoning gpsFix type instead of publishing no fix</td>
</tr>
</tbody>
</table>

Bitfield flags2

This Graphic explains the bits of flags2

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>psmState</td>
<td>power save mode state</td>
</tr>
<tr>
<td></td>
<td>0: ACQUISITION (or when psm disabled)</td>
</tr>
<tr>
<td></td>
<td>1: TRACKING</td>
</tr>
<tr>
<td></td>
<td>2: POWER OPTIMIZED TRACKING</td>
</tr>
<tr>
<td></td>
<td>3: INACTIVE</td>
</tr>
</tbody>
</table>
36.10 NAV-SVINFO (0x01 0x30)

36.10.1 Space Vehicle Information

<table>
<thead>
<tr>
<th>Message</th>
<th>NAV-SVINFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Space Vehicle Information</td>
</tr>
</tbody>
</table>
| Firmware | Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00 |
| Type | Periodic/Polled |
| Comment | - |

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x01 0x30</td>
<td>8 + 12*numCh</td>
<td>see below</td>
<td>CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>U1</td>
<td>-</td>
<td>numCh</td>
<td>-</td>
<td>Number of channels</td>
</tr>
<tr>
<td>5</td>
<td>X1</td>
<td>-</td>
<td>globalFlags</td>
<td>-</td>
<td>Bitmask (see graphic below)</td>
</tr>
<tr>
<td>6</td>
<td>U2</td>
<td>-</td>
<td>reserved2</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Start of repeated block (numCh times)

8 + 12*N	U1	-	chn	-	Channel number, 255 for SVs not assigned to a channel
9 + 12*N	U1	-	svid	-	Satellite ID, see Satellite numbering for assignment
10 + 12*N	X1	-	flags	-	Bitmask (see graphic below)
11 + 12*N	X1	-	quality	-	Bitfield (see graphic below)
12 + 12*N	U1	-	cno	dBHz	Carrier to Noise Ratio (Signal Strength)
13 + 12*N	I1	-	elev	deg	Elevation in integer degrees
14 + 12*N	I2	-	azim	deg	Azimuth in integer degrees
16 + 12*N	I4	-	prRes	cm	Pseudo range residual in centimetres

End of repeated block

Bitfield globalFlags

This Graphic explains the bits of globalFlags

| chipGen | 2 | 1 | 0 |

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| chipGen | Chip hardware generation
 0: Antaris, Antaris 4
 1: u-blox 5
 2: u-blox 6 |
Bitfield flags
This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>svUsed</td>
<td>SV is used for navigation</td>
</tr>
<tr>
<td>diffCorr</td>
<td>Differential correction data is available for this SV</td>
</tr>
<tr>
<td>orbitAvail</td>
<td>Orbit information is available for this SV (Ephemeris or Almanac)</td>
</tr>
<tr>
<td>orbitEph</td>
<td>Orbit information is Ephemeris</td>
</tr>
<tr>
<td>unhealthy</td>
<td>SV is unhealthy / shall not be used</td>
</tr>
<tr>
<td>orbitAlm</td>
<td>Orbit information is Almanac Plus</td>
</tr>
<tr>
<td>orbitAop</td>
<td>Orbit information is AssistNow Autonomous</td>
</tr>
<tr>
<td>smoothed</td>
<td>Carrier smoothed pseudorange used</td>
</tr>
</tbody>
</table>

Bitfield quality
This Graphic explains the bits of quality

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qualityInd</td>
<td>Signal Quality indicator (range 0..7). The following list shows the meaning of the different QI values:</td>
</tr>
<tr>
<td></td>
<td>0: This channel is idle</td>
</tr>
<tr>
<td></td>
<td>1: Channel is searching</td>
</tr>
<tr>
<td></td>
<td>2: Signal acquired</td>
</tr>
<tr>
<td></td>
<td>3: Signal detected but unusable</td>
</tr>
<tr>
<td></td>
<td>4: Code Lock on Signal</td>
</tr>
<tr>
<td></td>
<td>5, 6, 7: Code and Carrier locked</td>
</tr>
</tbody>
</table>
36.11 NAV-TIMEGPS (0x01 0x20)

36.11.1 GPS Time Solution

Message	NAV-TIMEGPS
Description | GPS Time Solution
Firmware | Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00
Type | Periodic/Polled
Comment | This message reports the precise GPS time of the most recent navigation solution including validity flags and an accuracy estimate.

Payload Structure:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>fTOW</td>
<td>ns</td>
<td>Fractional part of iTOW (range: +/-500000). The precise GPS time of week in seconds is: ((iTOW \times 1e-3) + (fTOW \times 1e-9))</td>
</tr>
<tr>
<td>8</td>
<td>I2</td>
<td>-</td>
<td>week</td>
<td>-</td>
<td>GPS week number of the navigation epoch</td>
</tr>
<tr>
<td>10</td>
<td>I1</td>
<td>-</td>
<td>leapS</td>
<td>s</td>
<td>GPS leap seconds (GPS-UTC)</td>
</tr>
<tr>
<td>11</td>
<td>X1</td>
<td>-</td>
<td>valid</td>
<td>-</td>
<td>Validity Flags (see graphic below)</td>
</tr>
<tr>
<td>12</td>
<td>U4</td>
<td>-</td>
<td>tAcc</td>
<td>ns</td>
<td>Time Accuracy Estimate</td>
</tr>
</tbody>
</table>

Bitfield valid

This Graphic explains the bits of valid

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>towValid</td>
<td>1 = Valid GPS time of week (iTOW & fTOW)</td>
<td></td>
</tr>
<tr>
<td>weekValid</td>
<td>1 = Valid GPS week number</td>
<td></td>
</tr>
<tr>
<td>leapSValid</td>
<td>1 = Valid GPS leap seconds</td>
<td></td>
</tr>
</tbody>
</table>
36.12 NAV-TIMEUTC (0x01 0x21)

36.12.1 UTC Time Solution

Message
NAV-TIMEUTC

Description
UTC Time Solution

Firmware
Supported on:
- u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00

Type
Periodic/Polled

Comment
Note that during a leap second there may be more (or less) than 60 seconds in a minute; see the description of leap seconds for details.

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5 0x62</td>
<td>0x01 0x21</td>
<td>20</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>U4</td>
<td>-</td>
<td>tAcc</td>
<td>ns</td>
<td>Time accuracy estimate (UTC)</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>nano</td>
<td>ns</td>
<td>Fraction of second, range -1e9 .. 1e9 (UTC)</td>
</tr>
<tr>
<td>12</td>
<td>U2</td>
<td>-</td>
<td>year</td>
<td>y</td>
<td>Year, range 1999..2099 (UTC)</td>
</tr>
<tr>
<td>14</td>
<td>U1</td>
<td>-</td>
<td>month</td>
<td>month</td>
<td>Month, range 1..12 (UTC)</td>
</tr>
<tr>
<td>15</td>
<td>U1</td>
<td>-</td>
<td>day</td>
<td>d</td>
<td>Day of month, range 1..31 (UTC)</td>
</tr>
<tr>
<td>16</td>
<td>U1</td>
<td>-</td>
<td>hour</td>
<td>h</td>
<td>Hour of day, range 0..23 (UTC)</td>
</tr>
<tr>
<td>17</td>
<td>U1</td>
<td>-</td>
<td>min</td>
<td>min</td>
<td>Minute of hour, range 0..59 (UTC)</td>
</tr>
<tr>
<td>18</td>
<td>U1</td>
<td>-</td>
<td>sec</td>
<td>s</td>
<td>Seconds of minute, range 0..60 (UTC)</td>
</tr>
<tr>
<td>19</td>
<td>X1</td>
<td>-</td>
<td>valid</td>
<td>-</td>
<td>Validity Flags (see graphic below)</td>
</tr>
</tbody>
</table>

Bitfield valid

This Graphic explains the bits of valid

```
 0 1 2
valid
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>validTOW</td>
<td>1 = Valid Time of Week</td>
</tr>
<tr>
<td>validWKN</td>
<td>1 = Valid Week Number</td>
</tr>
<tr>
<td>validUTC</td>
<td>1 = Valid UTC Time</td>
</tr>
</tbody>
</table>
36.13 NAV-VELECEF (0x01 0x11)

36.13.1 Velocity Solution in ECEF

<table>
<thead>
<tr>
<th>Message</th>
<th>NAV-VELECEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Velocity Solution in ECEF</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>See important comments concerning validity of velocity given in section Navigation Output Filters.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x01 0x11</td>
<td>20</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>ecefVX</td>
<td>cm/s</td>
<td>ECEF X velocity</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>ecefVY</td>
<td>cm/s</td>
<td>ECEF Y velocity</td>
</tr>
<tr>
<td>12</td>
<td>I4</td>
<td>-</td>
<td>ecefVZ</td>
<td>cm/s</td>
<td>ECEF Z velocity</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>sAcc</td>
<td>cm/s</td>
<td>Speed accuracy estimate</td>
</tr>
</tbody>
</table>

36.14 NAV-VELNED (0x01 0x12)

36.14.1 Velocity Solution in NED

<table>
<thead>
<tr>
<th>Message</th>
<th>NAV-VELNED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Velocity Solution in NED</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>See important comments concerning validity of velocity given in section Navigation Output Filters.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5 0x62</td>
<td>0x01 0x12</td>
<td>36</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>velN</td>
<td>cm/s</td>
<td>North velocity component</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>velE</td>
<td>cm/s</td>
<td>East velocity component</td>
</tr>
<tr>
<td>12</td>
<td>I4</td>
<td>-</td>
<td>velD</td>
<td>cm/s</td>
<td>Down velocity component</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>speed</td>
<td>cm/s</td>
<td>Speed (3-D)</td>
</tr>
<tr>
<td>20</td>
<td>U4</td>
<td>1e-5</td>
<td>heading</td>
<td>deg</td>
<td>Heading of motion 2-D</td>
</tr>
<tr>
<td>24</td>
<td>I4</td>
<td></td>
<td>gSpeed</td>
<td>cm/s</td>
<td>Ground speed (2-D)</td>
</tr>
<tr>
<td>Byte Offset</td>
<td>Number Format</td>
<td>Scaling</td>
<td>Name</td>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>28</td>
<td>U4</td>
<td>-</td>
<td>sAcc</td>
<td>cm/s</td>
<td>Speed accuracy Estimate</td>
</tr>
<tr>
<td>32</td>
<td>U4</td>
<td>1e-5</td>
<td>cAcc</td>
<td>deg</td>
<td>Course / Heading accuracy estimate</td>
</tr>
</tbody>
</table>
37 RXM (0x02)
Receiver Manager Messages: i.e. Satellite Status, RTC Status.
Messages in Class RXM output status and result data from the Receiver Manager.

37.1 RXM-PMREQ (0x02 0x41)

37.1.1 Requests a Power Management task

<table>
<thead>
<tr>
<th>Message</th>
<th>RXM-PMREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Requests a Power Management task</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Command</td>
</tr>
<tr>
<td>Comment</td>
<td>Request of a Power Management related task of the receiver.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5</td>
<td>0x62</td>
<td>0x02 0x41</td>
<td>8</td>
<td>see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>duration</td>
<td>ms</td>
<td>Duration of the requested task, set to zero for infinite duration</td>
</tr>
<tr>
<td>4</td>
<td>X4</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>task flags (see graphic below)</td>
</tr>
</tbody>
</table>

Bitfield flags
This Graphic explains the bits of flags

```
<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>backup</td>
</tr>
</tbody>
</table>
```

Name	Description
backup | The receiver goes into backup mode for a time period defined by duration

37.2 RXM-SVSI (0x02 0x20)

37.2.1 SV Status Info

<table>
<thead>
<tr>
<th>Message</th>
<th>RXM-SVSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>SV Status Info</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>Status of the receiver manager knowledge about GPS Orbit Validity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Structure</th>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0xB5</td>
<td>0x62</td>
<td>0x02 0x20</td>
<td>8 + 6*numSV</td>
<td>see below CK_A CK_B</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte Offset</td>
<td>Number Format</td>
<td>Scaling</td>
<td>Name</td>
<td>Unit</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>iTOW</td>
<td>ms</td>
<td>GPS time of week of the navigation epoch. See the description of iTOW for details.</td>
</tr>
<tr>
<td>4</td>
<td>I2</td>
<td>-</td>
<td>week</td>
<td>weeks</td>
<td>GPS week number of the navigation epoch</td>
</tr>
<tr>
<td>6</td>
<td>U1</td>
<td>-</td>
<td>numVis</td>
<td>-</td>
<td>Number of visible satellites</td>
</tr>
<tr>
<td>7</td>
<td>U1</td>
<td>-</td>
<td>numSV</td>
<td>-</td>
<td>Number of per-SV data blocks following</td>
</tr>
</tbody>
</table>

Start of repeated block (numSV times)

8 + 6*N	U1	-	svid	-	Satellite ID
9 + 6*N	X1	-	svFlag	-	Information Flags (see graphic below)
10 + 6*N	I2	-	azim	-	Azimuth
12 + 6*N	H1	-	elev	-	Elevation
13 + 6*N	X1	-	age	-	Age of Almanac and Ephemeris: (see graphic below)

End of repeated block

Bitfield svFlag

This Graphic explains the bits of svFlag

<table>
<thead>
<tr>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ura</td>
<td>Figure of Merit (URA) range 0..15</td>
</tr>
<tr>
<td>healthy</td>
<td>SV healthy flag</td>
</tr>
<tr>
<td>ephVal</td>
<td>Ephemeris valid</td>
</tr>
<tr>
<td>almVal</td>
<td>Almanac valid</td>
</tr>
<tr>
<td>notAvail</td>
<td>SV not available</td>
</tr>
</tbody>
</table>

Bitfield age

This Graphic explains the bits of age

<table>
<thead>
<tr>
<th>7 6 5 4 3 2 1 0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>almAge</td>
<td>Age of ALM in days offset by 4. i.e. the reference time may be in the future: ageOfAlm = (age & 0x0f) - 4</td>
</tr>
<tr>
<td>ephAge</td>
<td>Age of EPH in hours offset by 4. i.e. the reference time may be in the future: ageOfEph = ((age & 0xf0) >> 4) - 4</td>
</tr>
</tbody>
</table>
38 TIM (0x0D)
Timing Messages: i.e. Time Pulse Output, Timemark Results.
Messages in this class are output by the receiver, giving information on Timepulse and Timemark measurements.

38.1 TIM-TM2 (0x0D 0x03)
38.1.1 Time mark data

<table>
<thead>
<tr>
<th>Message</th>
<th>TIM-TM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Time mark data</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>This message contains information for high precision time stamping / pulse counting. The delay figures and timebase given in CFG-TP5 are also applied to the time results output in this message.</td>
</tr>
</tbody>
</table>

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x0D 0x03</td>
<td>28</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U1</td>
<td>-</td>
<td>ch</td>
<td>time</td>
<td>time marker channel 0 or 1</td>
</tr>
<tr>
<td>1</td>
<td>X1</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>Bitmask (see graphic below)</td>
</tr>
<tr>
<td>2</td>
<td>U2</td>
<td>-</td>
<td>count</td>
<td>-</td>
<td>rising edge counter.</td>
</tr>
<tr>
<td>4</td>
<td>U2</td>
<td>-</td>
<td>wnR</td>
<td>-</td>
<td>week number of last rising edge</td>
</tr>
<tr>
<td>6</td>
<td>U2</td>
<td>-</td>
<td>wnF</td>
<td>-</td>
<td>week number of last falling edge</td>
</tr>
<tr>
<td>8</td>
<td>U4</td>
<td>-</td>
<td>towMsR</td>
<td>ms</td>
<td>tow of rising edge</td>
</tr>
<tr>
<td>12</td>
<td>U4</td>
<td>-</td>
<td>towSubMsR</td>
<td>ns</td>
<td>millisecond fraction of tow of rising edge in nanoseconds</td>
</tr>
<tr>
<td>16</td>
<td>U4</td>
<td>-</td>
<td>towMsF</td>
<td>ms</td>
<td>tow of falling edge</td>
</tr>
<tr>
<td>20</td>
<td>U4</td>
<td>-</td>
<td>towSubMsF</td>
<td>ns</td>
<td>millisecond fraction of tow of falling edge in nanoseconds</td>
</tr>
<tr>
<td>24</td>
<td>U4</td>
<td>-</td>
<td>accEst</td>
<td>ns</td>
<td>Accuracy estimate</td>
</tr>
</tbody>
</table>

Bitfield flags

This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode</td>
<td>0=single</td>
</tr>
<tr>
<td></td>
<td>1=running</td>
</tr>
</tbody>
</table>
Bitfield flags Description continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>run</td>
<td>0=armed</td>
</tr>
<tr>
<td></td>
<td>1=stopped</td>
</tr>
<tr>
<td>newFallingEdge</td>
<td>new falling edge detected</td>
</tr>
<tr>
<td>timeBase</td>
<td>0=Time base is Receiver Time</td>
</tr>
<tr>
<td></td>
<td>1=Time base is GPS</td>
</tr>
<tr>
<td></td>
<td>2=Time base is UTC</td>
</tr>
<tr>
<td>utc</td>
<td>0=UTC not available</td>
</tr>
<tr>
<td></td>
<td>1=UTC available</td>
</tr>
<tr>
<td>time</td>
<td>0=Time is not valid</td>
</tr>
<tr>
<td></td>
<td>1=Time is valid (Valid GPS fix)</td>
</tr>
<tr>
<td>newRisingEdge</td>
<td>new rising edge detected</td>
</tr>
</tbody>
</table>

38.2 TIM-TP (0x0D 0x01)

38.2.1 Time Pulse Timedata

<table>
<thead>
<tr>
<th>Message</th>
<th>TIM-TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Time Pulse Timedata</td>
</tr>
<tr>
<td>Firmware</td>
<td>Supported on:</td>
</tr>
<tr>
<td></td>
<td>• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00</td>
</tr>
<tr>
<td>Type</td>
<td>Periodic/Polled</td>
</tr>
<tr>
<td>Comment</td>
<td>This message contains information for high precision timing. The recommended configuration when using this message is to set both the measurement rate (CFG–RATE) and the timepulse frequency (CFG–TPS) to 1Hz. For more information see section Time pulse.</td>
</tr>
<tr>
<td>Message Structure</td>
<td>Header</td>
</tr>
<tr>
<td></td>
<td>0xB5 0x62</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>U4</td>
<td>-</td>
<td>towMS</td>
<td>ms</td>
<td>Time pulse time of week according to time base</td>
</tr>
<tr>
<td>4</td>
<td>U4</td>
<td>2^-32</td>
<td>towSubMS</td>
<td>ms</td>
<td>Submillisecond part of TOWMS</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>qErr</td>
<td>ps</td>
<td>Quantization error of time pulse.</td>
</tr>
<tr>
<td>12</td>
<td>U2</td>
<td>-</td>
<td>week</td>
<td>weeks</td>
<td>Time pulse week number according to time base</td>
</tr>
<tr>
<td>14</td>
<td>X1</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>bitmask (see graphic below)</td>
</tr>
<tr>
<td>15</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
Bitfield flags
This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| timeBase | 0 = Time base is GPS
1 = Time base is UTC |
| utc | 0 = UTC not available
1 = UTC available |

38.3 TIM-VRFY (0x0D 0x06)
38.3.1 Sourced Time Verification

Message TIM-VRFY
Description Sourced Time Verification
Firmware Supported on:
• u-blox 6 (GPS/GLONASS/QZSS) firmware version 1.00
Type Polled/Once
Comment This message contains verification information about previous time received via AID-INI or from RTC

Message Structure

<table>
<thead>
<tr>
<th>Header</th>
<th>ID</th>
<th>Length (Bytes)</th>
<th>Payload</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xB5</td>
<td>0x62</td>
<td>0x0D 0x06</td>
<td>20</td>
<td>see below</td>
</tr>
</tbody>
</table>

Payload Contents:

<table>
<thead>
<tr>
<th>Byte Offset</th>
<th>Number Format</th>
<th>Scaling</th>
<th>Name</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I4</td>
<td>-</td>
<td>itow</td>
<td>ms</td>
<td>integer millisecond tow received by source</td>
</tr>
<tr>
<td>4</td>
<td>I4</td>
<td>-</td>
<td>frac</td>
<td>ns</td>
<td>sub-millisecond part of tow</td>
</tr>
<tr>
<td>8</td>
<td>I4</td>
<td>-</td>
<td>deltaMs</td>
<td>ms</td>
<td>integer milliseconds of delta time (current time minus sourced time)</td>
</tr>
<tr>
<td>12</td>
<td>I4</td>
<td>-</td>
<td>deltaNs</td>
<td>ns</td>
<td>sub-millisecond part of delta time</td>
</tr>
<tr>
<td>16</td>
<td>U2</td>
<td>-</td>
<td>wno</td>
<td>week</td>
<td>week number</td>
</tr>
<tr>
<td>18</td>
<td>X1</td>
<td>-</td>
<td>flags</td>
<td>-</td>
<td>information flags (see graphic below)</td>
</tr>
<tr>
<td>19</td>
<td>U1</td>
<td>-</td>
<td>reserved1</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Bitfield flags
This Graphic explains the bits of flags

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
Bitfield flags Description continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| src | aiding time source
0: no time aiding done
2: source was RTC
3: source was AID-INI |
RTCM Protocol

39 Introduction
The RTCM (Radio Technical Commission for Maritime Services) protocol is a unidirectional protocol (input to the receiver) that is used to supply the GPS receiver with real-time differential correction data (DGPS). The RTCM protocol specification is available from http://www.rtcn.org.

This feature is only applicable to GPS operation.

40 Supported Messages
The following RTCM 2.3 messages are supported:

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Differential GPS Corrections</td>
</tr>
<tr>
<td>2</td>
<td>Delta Differential GPS Corrections</td>
</tr>
<tr>
<td>3</td>
<td>GPS Reference Station Parameters</td>
</tr>
<tr>
<td>9</td>
<td>GPS Partial Correction Set</td>
</tr>
</tbody>
</table>

41 Configuration
The DGPS feature does not need any configuration to work properly. When an RTCM stream is input on any of the communication interfaces, the data will be parsed and applied if possible, which will put the receiver into DGPS mode. However, the RTCM protocol must be enabled on the interface used by means of the UBX-CFG-PRT message.

The only configurable parameter of DGPS mode is the timeout that can be specified using UBX-CFG-NAV5. This value defines the time after which old RTCM data will be discarded.

42 Output
DGPS mode will result in following modified output:

- **NMEA-GGA**: The quality field will be 2 (see NMEA Position Fix Flags). The age of DGPS corrections and Reference station id will be set.
- **NMEA-GLL, NMEA-RMC, NMEA-VTG, NMEA-GNS**: The posMode indicator will be D (see NMEA Position Fix Flags).
- **NMEA-PUBX-POSITION**: The status will be D2/D3; The age of DGPS corrections will be set.
- **UBX-NAV-SOL**: The DGPS will be set.
- **UBX-NAV-PVT**: The DGPS will be set.
- **UBX-NAV-STATUS**: The DGPS will be set; The DGPS input will be set to "PR+PRR".
- **UBX-NAV-SVINFO**: The DGPS flag will be set for channels with valid DGPS correction data.
- **UBX-NAV-DGPS**: This message will contain all valid DGPS data
- If the base line exceeds 100km and a message type 3 is received, a UBX-INF-WARNING will be output, e.g. "WARNING: DGPS baseline big: 330.3km"
43 Restrictions
The following restrictions apply to DGPS mode:

- The DGPS solution will only include measurements from satellites for which DGPS corrections were provided. This is because the navigation algorithms cannot mix corrected with uncorrected measurements.
- SBAS corrections will not be applied when using RTCM correction data.
- Precise Point Positioning will be deactivated when using RTCM correction data.
- RTCM correction data cannot be applied when using AssistNow Offline or AssistNow Autonomous.

44 Reference
The RTCM support is implemented according to RTCM 10402.3 (*RECOMMENDED STANDARDS FOR DIFFERENTIAL GNSS*).
Appendix

A Protocol Versions
The Protocol Version defines a set of messages that are applicable across various u-blox products. Each firmware used by a u-blox receiver supports a specific Protocol Version, which is not configurable. Each receiver reports its supported Protocol Version in the following ways:
• On start-up in the ‘boot screen’
• In the UBX-MON-VER message
The following tables show the supported Protocol Versions for a number of common firmware versions and platforms.

A.1 Supported Protocol Versions

<table>
<thead>
<tr>
<th>u-blox 5</th>
<th>Firmware Version</th>
<th>Supported Protocol Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>4.01</td>
<td>10.01</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>12.00</td>
</tr>
<tr>
<td></td>
<td>6.02</td>
<td>12.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>u-blox 6</th>
<th>Firmware Version</th>
<th>Supported Protocol Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.00</td>
<td>12.00</td>
</tr>
<tr>
<td></td>
<td>6.02</td>
<td>12.02</td>
</tr>
<tr>
<td></td>
<td>7.01</td>
<td>13.01</td>
</tr>
<tr>
<td></td>
<td>7.03</td>
<td>13.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>u-blox 6 GPS/GLONASS/QZSS</th>
<th>Firmware Version</th>
<th>Supported Protocol Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
<td>14.00</td>
</tr>
</tbody>
</table>

B u-blox 6 GPS/GLONASS/QZSS Default Settings
The default settings listed in this section apply from u-blox 6 GPS/GLONASS/QZSS ROM-based receivers with ROM version 1.00 and above. These values assume that the default levels of the configuration pins have been left unchanged. Default settings are dependent on the configuration pin settings, for information regarding these settings, consult the applicable Data Sheet.

B.1 Antenna Supervisor Settings (UBX-CFG-ANT)
For parameter and protocol description see section UBX-CFG-ANT.

Antenna Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags-svcs</td>
<td>Enable Control Signal</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>flags-scd</td>
<td>Enable Short Circuit Detection</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>flags-pdwnOnSCD</td>
<td>Enable Short Circuit Power Down logic</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>flags-recovery</td>
<td>Enable Automatic Short Circuit Recovery logic</td>
<td>Enabled</td>
<td></td>
</tr>
</tbody>
</table>
Antenna Settings continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags-ocd</td>
<td>Enable Open Circuit Detection</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>pins-pinSwitch</td>
<td>PIO-Pin used for switching antenna supply</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>pins-pinSCD</td>
<td>PIO-Pin used for detecting a short in the antenna supply</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>pins-pinOCD</td>
<td>PIO-Pin used for detecting open/not connected antenna</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

B.2 Datum Settings (UBX-CFG-DAT)

For parameter and protocol description see section **UBX-CFG-DAT**.

Datum Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>datumNum</td>
<td>Datum number</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>datumName</td>
<td>Datum name</td>
<td>WGS84</td>
<td></td>
</tr>
<tr>
<td>majA</td>
<td>Semi-major Axis</td>
<td>6378137</td>
<td>m</td>
</tr>
<tr>
<td>flat</td>
<td>1.0 / Flattening</td>
<td>298.257223563</td>
<td></td>
</tr>
<tr>
<td>dX</td>
<td>X Axis shift at the origin</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>dY</td>
<td>Y Axis shift at the origin</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>dZ</td>
<td>Z Axis shift at the origin</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>rotX</td>
<td>Rotation about the X Axis</td>
<td>0</td>
<td>s</td>
</tr>
<tr>
<td>rotY</td>
<td>Rotation about the Y Axis</td>
<td>0</td>
<td>s</td>
</tr>
<tr>
<td>rotZ</td>
<td>Rotation about the Z Axis</td>
<td>0</td>
<td>s</td>
</tr>
<tr>
<td>scale</td>
<td>Scale change</td>
<td>0</td>
<td>ppm</td>
</tr>
</tbody>
</table>

B.3 Navigation Settings (UBX-CFG-NAV5)

For parameter and protocol description see section **UBX-CFG-NAV5**.

Navigation Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynModel</td>
<td>Dynamic Platform Model</td>
<td>0 - Portable</td>
<td></td>
</tr>
<tr>
<td>fixMode</td>
<td>Fix Mode</td>
<td>3 - Auto 2D/3D</td>
<td></td>
</tr>
<tr>
<td>fixedAlt</td>
<td>Fixed Altitude</td>
<td>N/A (fixMode=3)</td>
<td>m</td>
</tr>
<tr>
<td>fixedAltVar</td>
<td>Fixed Altitude Variance</td>
<td>N/A (fixMode=3)</td>
<td>m^2</td>
</tr>
<tr>
<td>minElev</td>
<td>Min SV Elevation</td>
<td>5</td>
<td>deg</td>
</tr>
<tr>
<td>pDop</td>
<td>PDOP Mask</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>tDop</td>
<td>TDOP Mask</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>pAcc</td>
<td>P Accuracy</td>
<td>100</td>
<td>m</td>
</tr>
<tr>
<td>tAcc</td>
<td>T Accuracy</td>
<td>300</td>
<td>m</td>
</tr>
<tr>
<td>staticHoldThresh</td>
<td>Static Hold Threshold</td>
<td>0.00</td>
<td>cm/s</td>
</tr>
<tr>
<td>dgpsTimeOut</td>
<td>DGPS timeout</td>
<td>60</td>
<td>s</td>
</tr>
<tr>
<td>cnoThreshNumSVs</td>
<td>Number of SVs required to have C/N0 above cnoThresh for a valid fix</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>cnoThresh</td>
<td>C/N0 threshold for a valid fix</td>
<td>0</td>
<td>dBHz</td>
</tr>
</tbody>
</table>

The Dynamic Platform Model default setting is different for certain product variants.
B.4 Navigation Settings (UBX-CFG-NAVX5)
For parameter and protocol description see section UBX–CFG–NAVX5.

Navigation Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>minSVs</td>
<td>Minimum number of SV</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>maxSVs</td>
<td>Maximum number of SV</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>minCNO</td>
<td>Minimum C/N0 for navigation</td>
<td>7</td>
<td>dBHz</td>
</tr>
<tr>
<td>initFix3D</td>
<td>Initial Fix must be 3D</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>aopCfg-useAOP</td>
<td>Use AssistNow Autonomous</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>aopOrbMaxErr</td>
<td>AssistNow Autonomous max. acceptable orbit error</td>
<td>0</td>
<td>m</td>
</tr>
<tr>
<td>wknRollover</td>
<td>Weeknumber rollover</td>
<td>1691</td>
<td></td>
</tr>
</tbody>
</table>

The minimum number of SV default setting is different for certain product variants.

B.5 Output Rates (UBX-CFG-RATE)
For parameter and protocol description see section UBX–CFG–RATE.

Output Rate Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeRef</td>
<td>Time Source</td>
<td>1 – GPS time</td>
<td></td>
</tr>
<tr>
<td>measRate</td>
<td>Measurement Period</td>
<td>1000</td>
<td>ms</td>
</tr>
<tr>
<td>navRate</td>
<td>Measurement Rate</td>
<td>1</td>
<td>Cycles</td>
</tr>
</tbody>
</table>

B.6 Power Management 2 Configuration (UBX-CFG-PM2)
For parameter and protocol description see section UBX–CFG–PM2.

Power Management 2 Configuration Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>Version</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-extintSelect</td>
<td>EXTINT pin selection</td>
<td>EXTINT0</td>
<td></td>
</tr>
<tr>
<td>flags-extintWake</td>
<td>EXTINT pin control - keep awake</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>flags-extintBackup</td>
<td>EXTINT pin control - force backup</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>flags-limitPeakCurr</td>
<td>Limit peak current</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>flags-WaitTimeFix</td>
<td>Wait for time fix</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>flags-updateRTC</td>
<td>Update Real Time Clock</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>flags-updateEPH</td>
<td>Update ephemeris</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>flags-doNotEnterOff</td>
<td>Do not enter ‘inactive for search’ state when no fix</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>flags-mode</td>
<td>Mode of operation</td>
<td>Cyclic tracking</td>
<td></td>
</tr>
<tr>
<td>updatePeriod</td>
<td>Update period</td>
<td>1000</td>
<td>ms</td>
</tr>
<tr>
<td>searchPeriod</td>
<td>Search period</td>
<td>10000</td>
<td>ms</td>
</tr>
<tr>
<td>gridOffset</td>
<td>Grid offset</td>
<td>0</td>
<td>ms</td>
</tr>
<tr>
<td>onTime</td>
<td>On time</td>
<td>0</td>
<td>s</td>
</tr>
<tr>
<td>minAcqTime</td>
<td>Minimum acquisition time</td>
<td>0</td>
<td>s</td>
</tr>
</tbody>
</table>
B.7 Receiver Manager Configuration (UBX-CFG-RXM)
For parameter and protocol description see section UBX-CFG-RXM.

Power Management Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpMode</td>
<td>Low power mode</td>
<td>0 - Continuous Mode</td>
<td></td>
</tr>
</tbody>
</table>

B.8 GNSS system configuration (UBX-CFG-GNSS)
For parameter and protocol description see section UBX-CFG-GNSS.

UBX-CFG-GNSS Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>numTrkChHw</td>
<td>Number of available tracking channels</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>numTrkChUse</td>
<td>Number of tracking channels to use</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>numConfigBlocks</td>
<td>Number of configuration blocks following</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>gnssId</td>
<td>GNSS identifier (see Satellite Numbering)</td>
<td>0, 1, 5, 6</td>
<td></td>
</tr>
<tr>
<td>flags-enable</td>
<td>Enable this GNSS system</td>
<td>1, 1, 1, 0</td>
<td></td>
</tr>
<tr>
<td>resTrkCh</td>
<td>Minimum number of tracking channels per GNSS</td>
<td>4, 1, 0, 8</td>
<td></td>
</tr>
<tr>
<td>maxTrkCh</td>
<td>Maximum number of tracking channels per GNSS</td>
<td>255, 3, 3, 255</td>
<td></td>
</tr>
</tbody>
</table>

B.9 SBAS Configuration (UBX-CFG-SBAS)
For parameter and protocol description see section UBX-CFG-SBAS.

SBAS Configuration Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode-enabled</td>
<td>SBAS Subsystem</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>mode-test</td>
<td>Allow test mode usage</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>usage-range</td>
<td>Ranging (Use SBAS for navigation)</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>usage-diffCorr</td>
<td>Apply SBAS Correction Data</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>usage-integrity</td>
<td>Apply integrity information</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>scanmode1</td>
<td>PRN Codes 120-151</td>
<td>120, 124, 126, 127, 129, 133, 135, 137, 138</td>
<td></td>
</tr>
<tr>
<td>scanmode2</td>
<td>PRN Codes 152-158</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

B.10 Port Setting (UBX-CFG-PRT)
For parameter and protocol description see section UBX-CFG-PRT.

Port Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ports</td>
<td>Extended TX timeout</td>
<td>0 - disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TX-ready feature</td>
<td>0 - disabled</td>
<td></td>
</tr>
<tr>
<td>DDC/I²C (Target0)</td>
<td>Protocol in</td>
<td>0+1+2 – UBX+NMEA+RTCM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol out</td>
<td>0+1 – UBX+NMEA</td>
<td></td>
</tr>
<tr>
<td>USART1 (Target1)</td>
<td>Protocol in</td>
<td>0+1+2 – UBX+NMEA+RTCM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol out</td>
<td>0+1 – UBX+NMEA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baudrate</td>
<td>9600</td>
<td>baud</td>
</tr>
</tbody>
</table>
Port Default Settings continued

<table>
<thead>
<tr>
<th>Parameter (Target2)</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>USART2</td>
<td>Protocol in</td>
<td>0+1+2 – UBX+NMEA+RTCM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol out</td>
<td>0+1 – UBX+NMEA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baudrate</td>
<td>9600 baud</td>
<td></td>
</tr>
<tr>
<td>USB (Target3)</td>
<td>Protocol in</td>
<td>0+1+2 – UBX+NMEA+RTCM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol out</td>
<td>0+1 – UBX+NMEA</td>
<td></td>
</tr>
<tr>
<td>SPI (Target4)</td>
<td>Protocol in</td>
<td>0+1+2 – UBX+NMEA+RTCM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocol out</td>
<td>0+1 – UBX+NMEA</td>
<td></td>
</tr>
</tbody>
</table>

B.11 Port Setting (UBX-CFG-USB)

For parameter and protocol description see section UBX-CFG-USB.

USB default settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags-powerMode</td>
<td>Power Mode</td>
<td>0 (bus-powered)</td>
<td></td>
</tr>
<tr>
<td>powerConsumption</td>
<td>Bus Current required</td>
<td>100 mA</td>
<td></td>
</tr>
</tbody>
</table>

B.12 Message Settings (UBX-CFG-MSG)

For parameter and protocol description see section UBX-CFG-MSG.

Enabled output messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Type</th>
<th>All Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEA - GGA</td>
<td>Out</td>
<td>1</td>
</tr>
<tr>
<td>NMEA - GLL</td>
<td>Out</td>
<td>1</td>
</tr>
<tr>
<td>NMEA - GSA</td>
<td>Out</td>
<td>1</td>
</tr>
<tr>
<td>NMEA - GSV</td>
<td>Out</td>
<td>1</td>
</tr>
<tr>
<td>NMEA - RMC</td>
<td>Out</td>
<td>1</td>
</tr>
<tr>
<td>NMEA - VTG</td>
<td>Out</td>
<td>1</td>
</tr>
</tbody>
</table>

B.13 NMEA Protocol Settings (UBX-CFG-NMEA)

For parameter and protocol description see section UBX-CFG-NMEA.

NMEA Protocol Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter-posFilt</td>
<td>Enable position output even for failed or invalid fixes</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>filter-mskPosFilt</td>
<td>Enable position even for invalid fixes</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>filter-timeFilt</td>
<td>Enable time output even for invalid times</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>filter-dateFilt</td>
<td>Enable time output even for invalid dates</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>filter-gpsOnlyFilter</td>
<td>Restrict output to GPS satellites only</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>filter-trackFilt</td>
<td>Enable COG output even if COG is frozen</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>nmeaVersion</td>
<td>NMEA version</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>numSV</td>
<td>Number of SVs to report</td>
<td>Unlimited</td>
<td></td>
</tr>
<tr>
<td>flags-compat</td>
<td>Compatibility Mode</td>
<td>Disabled</td>
<td></td>
</tr>
</tbody>
</table>
NMEA Protocol Default Settings continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags-consider</td>
<td>Consideration Mode</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>gnssToFilter-gps</td>
<td>Disable GPS satellites</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>gnssToFilter-sbas</td>
<td>Disable SBAS satellites</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>gnssToFilter-qzss</td>
<td>Disable QZSS satellites</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>gnssToFilter-glonass</td>
<td>Disable GLONASS satellites</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>svNumbering</td>
<td>Output of SV's with no NMEA defined value</td>
<td>0 (not output)</td>
<td></td>
</tr>
<tr>
<td>mainTalkerId</td>
<td>Override main Talker ID</td>
<td>0 (not overridden)</td>
<td></td>
</tr>
<tr>
<td>gsvTalkerId</td>
<td>Override GSV Talker ID</td>
<td>0 (not overridden)</td>
<td></td>
</tr>
</tbody>
</table>

B.14 Remote Inventory (UBX-CFG-RINV)

For parameter and protocol description see section UBX-CFG-RINV.

UBX-CFG-RINV Default Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags-dump</td>
<td>Dump data at startup</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flags-binary</td>
<td>Data is binary</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>Data stored in Remote Inventory</td>
<td>Notice: no data saved!</td>
<td></td>
</tr>
</tbody>
</table>

B.15 INF Messages Settings (UBX-CFG-INF)

For parameter and protocol description see section UBX-CFG-INF.

NMEA default enabled INF msg

<table>
<thead>
<tr>
<th>Message</th>
<th>Type</th>
<th>All Targets</th>
<th>Range/Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF-ERROR</td>
<td>Out</td>
<td>1</td>
<td>In NMEA Protocol only (GPTXT)</td>
</tr>
<tr>
<td>INF-WARNING</td>
<td>Out</td>
<td>1</td>
<td>In NMEA Protocol only (GPTXT)</td>
</tr>
<tr>
<td>INF-NOTICE</td>
<td>Out</td>
<td>1</td>
<td>In NMEA Protocol only (GPTXT)</td>
</tr>
<tr>
<td>INF-TEST</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INF-DEBUG</td>
<td>Out</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B.16 Timepulse Settings (UBX-CFG-TP5)

For parameter and protocol description see section UBX-CFG-TP5.

TIMEPULSE default settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_Idx</td>
<td>Time pulse selection</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>antCableDelay</td>
<td>Cable Delay</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>rfGroupDelay</td>
<td>RF Groupdelay</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>freqPeriod</td>
<td>Period</td>
<td>1000000</td>
<td>us</td>
</tr>
<tr>
<td>freqPeriodLock</td>
<td>Period Locked</td>
<td>1000000</td>
<td>us</td>
</tr>
<tr>
<td>pulseLenRatio</td>
<td>Pulse Length</td>
<td>0</td>
<td>us</td>
</tr>
<tr>
<td>pulseLenRatioLock</td>
<td>Pulse Length Locked</td>
<td>100000</td>
<td>us</td>
</tr>
<tr>
<td>userConfigDelay</td>
<td>User Delay</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>flags-gridUtcGps</td>
<td>Timegrid</td>
<td>1 (GPS Time)</td>
<td></td>
</tr>
<tr>
<td>flags-polarity</td>
<td>Polarity</td>
<td>1 (rising edge at top of second)</td>
<td></td>
</tr>
<tr>
<td>flags-alignToTow</td>
<td>Align to TOW</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-isLength</td>
<td>IsLength</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
TIMEPULSE default settings continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags-isFreq</td>
<td>IsFreq</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flags-lockedOtherSet</td>
<td>Locked other setting</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-LockGpsFreq</td>
<td>Lock to GPS freq</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-Active</td>
<td>Active</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TIMEPULSE2 default settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tpIdx</td>
<td>Time pulse selection</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>antCableDelay</td>
<td>Cable Delay</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>rfGroupDelay</td>
<td>RF Groupdelay</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>freqPeriod</td>
<td>Frequency</td>
<td>4</td>
<td>Hz</td>
</tr>
<tr>
<td>freqPeriodLock</td>
<td>Frequency Locked</td>
<td>1</td>
<td>Hz</td>
</tr>
<tr>
<td>pulseLenRatio</td>
<td>Pulse Length</td>
<td>125000</td>
<td>us</td>
</tr>
<tr>
<td>pulseLenRatioLock</td>
<td>Pulse Length Locked</td>
<td>100000</td>
<td>us</td>
</tr>
<tr>
<td>userConfigDelay</td>
<td>User Delay</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>flags-gridUtcGps</td>
<td>Timegrid</td>
<td>1 (GPS Time)</td>
<td></td>
</tr>
<tr>
<td>flags-polarity</td>
<td>Polarity</td>
<td>1 (rising edge at top of second)</td>
<td></td>
</tr>
<tr>
<td>flags-alignToTow</td>
<td>Align to TOW</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-isLength</td>
<td>IsLength</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-isFreq</td>
<td>IsFreq</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-lockedOtherSet</td>
<td>Locked other setting</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-LockGpsFreq</td>
<td>Lock to GPS freq</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>flags-Active</td>
<td>Active</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

B.17 Jammer/Interference Monitor (UBX-CFG-ITFM)

For parameter and protocol description see section **UBX-CFG-ITFM**.

Jamming/Interference monitor default settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Setting</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>config-enable</td>
<td>Enable</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>config-bbThreshold</td>
<td>Broadband interference detection threshold</td>
<td>3</td>
<td>dB</td>
</tr>
<tr>
<td>config-cwThreshold</td>
<td>CW interference detection threshold</td>
<td>15</td>
<td>dB</td>
</tr>
<tr>
<td>config-antSetting</td>
<td>Antenna setting</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

C u-blox 6 GPS/GLONASS/QZSS Standard firmware versions

Standard FW version strings

<table>
<thead>
<tr>
<th>Generation</th>
<th>Version</th>
<th>String</th>
<th>ROM BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>u-blox 6 GPS/GLONASS/QZSS</td>
<td>FW 1.00</td>
<td>EXT CORE 1.00 (59843) Jun 27 2012 18:25:00</td>
<td>u-blox 6 ROM 6.02 - 7.03</td>
</tr>
</tbody>
</table>
Related Documents

Overview

As part of our commitment to customer support, u-blox maintains an extensive volume of technical documentation for our products. In addition to product-specific data sheets and integration manuals, general documents are also available. These include:

- GPS Compendium, Docu. No GPS-X-02007
- GPS Antennas - RF Design Considerations for u-blox GPS Receivers, Docu. No GPS-X-08014

Our website www.u-blox.com is a valuable resource for general and product specific documentation.

For design and integration projects the Receiver Description Including Protocol Specification should be used together with the Data Sheet and Hardware Integration Manual of the GPS receiver.
Contact

For complete contact information visit us at www.u-blox.com

Headquarters
u-blox AG
Zuercherstrasse 68
CH-8800 Thalwil
Switzerland
Phone: +41 44 722 74 44
Fax: +41 44 722 74 47
E-mail: info@u-blox.com

Offices
North, Central and South America
u-blox America, Inc.
Phone: +1 (703) 483 3180
E-mail: info_us@u-blox.com

Regional Office West Coast:
Phone: +1 (408) 573 3640
E-mail: info_us@u-blox.com

Technical Support:
Phone: +1 (703) 483 3185
E-mail: support_us@u-blox.com

Europe, Middle East, Africa
u-blox AG
Phone: +41 44 722 74 44
E-mail: info@u-blox.com

Technical Support:
Phone: +41 44 722 74 44
E-mail: info@u-blox.com

Asia, Australia, Pacific
u-blox Singapore Pte. Ltd.
Phone: +65 6734 3811
E-mail: info_ap@u-blox.com
Support: support_ap@u-blox.com

Regional Office China:
Phone: +86 10 68 133 545
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office Japan:
Phone: +81 03 5775 3850
E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com

Regional Office Korea:
Phone: +82 2 542 0861
E-mail: info_kr@u-blox.com
Support: support_kr@u-blox.com

Regional Office Taiwan:
Phone: +886 2 2657 1090
E-mail: info_tw@u-blox.com
Support: support_tw@u-blox.com