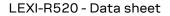


LEXI-R520

Ultra-small LTE-M / NB-IoT module


Data sheet

Abstract

Technical data sheet describing the ultra-small LEXI-R520 multi-band LTE-M / NB-IoT modules, based on the latest u-blox UBX-R52 chipset, integrating cellular modem and A-GPS technology, delivering data connectivity alongside satellite positioning in the compact LEXI form factor.

Document information

Title	LEXI-R520	
Subtitle	Ultra-small LTE-M / NB-loT module	
Document type	Data sheet	
Document number	UBX-22020070	
Revision and date	R03	14-Mar-2024
Disclosure restriction	C1-Public	

Product status	Corresponding content status								
Functional sample	Draft	For functional testing. Revised and supplementary data will be published later.							
In development / Prototype	Objective specification	Target values. Revised and supplementary data will be published later.							
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.							
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.							
Mass production / End of life	Production information	Document contains the final product specification.							

This document applies to the following products:

Product name	Type number	Firmware version	Notification reference	Product status
LEXI-R520	LEXI-R520-02B-00	Modem: 05.11 Application: A00.01	UBXDOC-686885345-2017	Engineering sample

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this document. Copying, reproduction, modification or disclosure to third parties of this document or any part thereof is only permitted with the express written permission of u-blox.

The information contained herein is provided "as is" and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent documents, visit www.u-blox.com.

Copyright © u-blox AG.

Contents

Docu	men	t information	.2
Cont	ents		.3
1 F	unct	ional description	.5
1.1	Ove	rview	.5
1.2	Bloc	k diagram	.6
1.3	Proc	duct description	.6
1.4	AT c	command support	.7
1.5	Sup	ported features	.7
2 Ir	nterf	aces	10
2.1	Pow	er management	
2	.1.1	Module supply input (VCC)	10
2	.1.2	Generic digital interfaces supply output (V_INT)	10
2.2	Ante	enna interfaces	
2	.2.1	Cellular antenna RF interface (ANT)	
2	.2.2	Cellular antenna detection (ANT_DET)	
2	.2.3	GPS antenna RF interface (ANT_GNSS)	
		GPS antenna or LNA control (ANT_ON)	
2.3	Syst	tem functions	
2	.3.1	Module power-on	
2	.3.2	Module power-off	
	.3.3	Module reset	
2.4	SIM		
2	.4.1	SIM interface	
	.4.2	SIM detection	
2.5		al communication	
2		UART interfaces	
		USB interface	
2	.5.3	SPI interface	
2	.5.4	SDIO interface	
_		I2C interface	
)	
		D	
		ular antenna dynamic tuner interface	
		erved pin (RSVD)	
		finition	
		assignment	
		ical specifications	
4.1	Abs	olute maximum rating	23
	.1.1	Maximum ESD	
4.2	Ope	rating conditions	24

	4.2.1	Operating temperature range	.24
	4.2.2	Supply/power pins	.24
	4.2.3	Current consumption	.25
	4.2.4	LTE RF characteristics	.26
	4.2.5	SpotNow characteristics	.28
	4.2.6	ANT_DET pin	.28
	4.2.7	PWR_ON pin	.28
	4.2.8	RESET_N pin	.28
	4.2.9	SIM pins	.29
	4.2.10	I2C pins	.29
	4.2.11	Generic Digital Interfaces pins	.29
	4.2.12	USB pins	.30
	4.2.13	ADC pin	.30
	4.2.14	Smart temperature supervisor	.30
5	Mech	anical specifications	31
6	Qualit	fication and approvals	32
	6.1 Reli	ability tests	.32
	6.2 App	provals	.32
7	Produ	ict handling & soldering	33
	7.1 Pac	kaging	.33
	7.1.1	Reels	.33
	7.1.2	Tapes	.33
	7.2 Moi	sture sensitivity levels	.33
	7.3 ESE) precautions	.34
	7.4 Ref	low soldering	.34
8	Label	ing and ordering information	35
	8.1 Pro	duct labeling	.35
	8.2 Exp	lanation of codes	.35
	8.3 Ord	ering information	.35
A	ppendix	·	36
Α	Gloss	ary	36
		ocumentation	
R	evision	history	39
		•	

Functional description 1

1.1 **Overview**

LEXI-R520 is an LTE Cat M1 / LTE Cat NB2 module available in the ultra-small LEXI LGA form factor (16 x 16 mm, 133-pin), based on the latest u-blox UBX-R52 cellular chipset. It is optimized for extremely low power consumption in deep-sleep PSM / eDRX and it integrates the u-blox SpotNow Assisted-GPS receiver technology with separate GPS antenna interface.

The LEXI-R520 modules provide software-based multi-band configurability enabling international multi-regional coverage in LTE-M and NB-IoT radio access technologies, supporting a comprehensive set of 3GPP Rel. 14 features that are relevant for IoT applications.

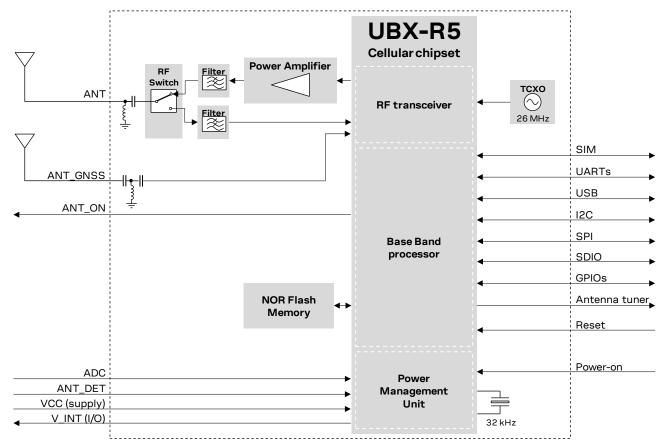
LEXI-R520 modules offer data communications up to 1200 kbit/s over an extended operating temperature range of -40 °C to +85 °C, with low power consumption, and with coverage enhancement for deeper range into buildings and basements (and underground with NB2).

Measuring just 16 x 16 mm, LEXI-R520 modules are ideal for size-constrained devices like people and animal wearables, small asset trackers, portable healthcare systems and other small IoT applications.

With many interface options and an integrated IP stack, LEXI-R520 modules are the optimal choice for LPWA applications with low to medium data throughput rates, as well as devices that require long battery lifetimes, such as used in smart metering, smart lighting, telematics, asset tracking, remote monitoring, alarm panels, and connected healthcare.

Customers can future-proof their solutions by over-the-air firmware updates, thanks to the uFOTA client/server solution that utilizes LwM2M, a light and compact protocol ideal for IoT.

Model	Region	RAT	Pos	sitio	ning	u-blox services										I	nte	erfa	ace	s							Fea	itu	res							Gra	de
		LTE category LTE FDD bands	Integrated u-blox SpotNow A-GPS receiver	Dedicated GPS antenna interface	External GNSS control via modem	MQTT Anywhere,	MQTT Flex	AssistNow	CellLocate®	CloudLocate	UARTS	USB (for diagnostics)	120	SIM	GPIOs	Digital audio (125)	u-blox open CPU (uCPU)	Secure poor, updates	Alterna dynamic cumig Hitra-fow nower consumption in DSM		Embedded HTTP, FTP	Embedded TLS, DTLS	FW update via serial (FOAT)	u-blox FW update Over the Air (uFOTA)	LwM2M with dynamically loaded objects	Embedded MQTT, MQTT-SN	Embedded CoAP	Last gasp	Jamming detection	Antenna and SIM detection	Standard Professional	Automotive					
LEXI-R52	Multi Region	M1 _* NB2	•	٠	•	•	•	•	•	•	•	•	•	•	•		•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•						


Table 1 lists the main features of LEXI-R520 modules.

TE bands 1, 2, 3, 4, 5, 8, 12, 13, 18, 19, 20, 25, 26, 28, 66, 71, 85

Table 1: LEXI-R520 main features summary

1.2 Block diagram

Figure 1: LEXI-R520 block diagram

The current product version of the LEXI-R520 module does not support the following interfaces, which should be left unconnected and should not be driven by external devices:

- o SPI interface
- o SDIO interface

1.3 Product description

The LEXI-R520 is an LTE Cat M1 / NB2 module for multi-region use, designed to achieve extremely low current consumption in deep-sleep power saving mode (PSM). It includes the integrated u-blox SpotNow A-GPS receiver functionality for global position acquisition.

Item	LEXI-R520
Cellular protocol stack	3GPP Rel. 13 LTE Cat M1 and NB1 3GPP Rel. 14 LTE Cat M1 additional core features: Coverage Enhancement Mode B, Uplink TBS of 2984b 3GPP Rel. 14 LTE Cat NB2 additional core features: Higher data rate (TBS of 2536b) Mobility enhancement (RRC connection re-establishment), E-Cell ID, 2 HARQ processes, Release Assistant, Random access on Non-Anchor Carrier
Cellular Radio Access Technology	LTE Cat M1 Half-Duplex LTE Cat NB2 Half-Duplex

Item	LEXI-R520
Cellular operating bands	LTE FDD band 1 (2100 MHz)
	LTE FDD band 2 (1900 MHz)
	LTE FDD band 3 (1800 MHz)
	LTE FDD band 4 (1700 MHz)
	LTE FDD band 5 (850 MHz)
	LTE FDD band 8 (900 MHz)
	LTE FDD band 12 (700 MHz)
	LTE FDD band 13 (750 MHz)
	LTE FDD band 18 (850 MHz)
	LTE FDD band 19 (850 MHz)
	LTE FDD band 20 (800 MHz)
	LTE FDD band 25 (1900 MHz)
	LTE FDD band 26 (850 MHz)
	LTE FDD band 28 (700 MHz)
	LTE FDD band 66 (1700 MHz)
	LTE FDD band 71 (600 MHz)
	LTE FDD band 85 (700 MHz)
Cellular power class	LTE power class 3 (23 dBm)
Cellular data rate	LTE category M1:
	• up to 1200 kbit/s UL
	• up to 375 kbit/s DL
	LTE category NB2:
	• up to 140 kbit/s UL
	• up to 125 kbit/s DL
Assisted-GPS receiver type	u-blox SpotNow engine
	GPS L1C/A

Table 2: LEXI-R520 cellular and GNSS main characteristics

1.4 AT command support

The LEXI-R520 module supports AT commands according to the 3GPP standards TS 27.007 [4], TS 27.005 [5], TS 27.010 [6], and the u-blox AT commands extension.

For the complete list of AT commands and their description, see the AT commands manual [1].

1.5 Supported features

Table 3 lists some of the main features supported by LEXI-R520 modules.

Feature	Description				
Open CPU (uCPU)	Capability to run customer application code directly on LEXI-R520 modules.				
	The functionality is available upon request.				
Device security	Hardware-based security functions of the chipset are used to provide:				
	 Secure boot: guarantees software authenticity and integrity 				
	Secure update: supervises the secure delivery of the correct FW to the module				
MQTT Anywhere, MQTT Flex	With u-blox's communication services – MQTT Anywhere or MQTT Flex – data overhead, time spent on-the-air, and energy consumption can be reduced, thus enabling users to extend device life cycles, lower costs, and improve ROI.				

F

Feature	Description
Integrated A-GPS receiver	Integrated u-blox SpotNow feature, a SW implementation of an Assisted GPS receiver (A-GPS) running on the u-blox UBX-R52 chipset. With the unique SpotNow feature, cellular and GPS use two dedicated antennas. Internally to the module, the radio resources are switched between the two inputs depending on the corresponding operating.
	SpotNow feature can be used when the cellular modem is offline or when it is registered to a cell. SpotNow feature relies on assistance data to be downloaded at least every couple of hours. Cellular and SpotNow may work together, with the GPS signals being tracked during the cellular eDRX paging cycle. This avoids any conflicts or possible interruptions of the cellular operations, bringing service continuity.
External GNSS control via modem	Access to external u-blox positioning chips and modules through I2C interface. This means that any host processor can control the LEXI-R520 module and the u-blox positioning chip or module through a single serial port.
Embedded AssistNow Software	Embedded AssistNow Online and AssistNow Offline clients are available.
CellLocate®	Enables the estimation of device position based on the parameters of the mobile network cells visible to the specific device based on the CellLocate® database.
Hybrid positioning	Provides the module's current position using the integrated A-GPS receiver or the estimated position from CellLocate®, depending on which positioning method provides the best and fastest solution according to the user configuration.
u-blox Smart Connection Manager (uSCM)	The u-blox Smart Connection Manager (uSCM) is an application running on the module that may be enabled to let the module automatically handle the connection with the network, setting up the link and reestablishing it if dropped according to some predefined and user-customizable profiles which set the module basic modes of operation. The uSCM feature massively reduces the complexity of the application code controlling the module, saving developers time, reducing time to market, and optimizing module behavior in typical operating modes.
Antenna dynamic tuning	Real-time control of an external antenna matching IC via two dedicated pins of the module according to the LTE band used by the module.
Embedded TCP and UDP stack	Embedded TCP/IP and UDP/IP stack including direct link mode for TCP and UDP sockets. Sockets can be set in Direct Link mode to establish a transparent end-to-end communication with an already connected TCP or UDP socket via the serial interface.
HTTP, HTTPS (v1.0 for +UHTTP, v1.1 for LwM2M client)	Hyper-Text Transfer Protocol as well as Secure Hyper-Text Transfer Protocol (SSL encryption) functionalities are supported via AT commands.
FTP, FTPS	File Transfer Protocol as well as Secure File Transfer Protocol (SSL encryption of FTP control channel) functionalities are supported by means of AT commands.
CoAP (RFC 7252 [11])	Embedded Constrained Application Protocol (CoAP) datagram-based client/server application protocol designed to easily translate from HTTP for simplified integration with the web.
MQTT (v3.1.1) and MQTT-SN (v1.2)	Embedded Message Queuing Telemetry Transport (MQTT) and MQTT for Sensor Networks (MQTT-SN) publish-subscribe messaging protocols designed for lightweight M2M communications over TCP (MQTT) or over UDP (MQTT-SN). These allow one-to-one, one-to-many and many-to-one communications over a TCP or UDP connection.
LwM2M (v1.0)	The LwM2M is a light and compact communication protocol designed for managing loT machine-to-machine communication between a LwM2M server and a LwM2M client located in lightweight, low power or resource-constrained LwM2M devices, with object data model.
TLS (v1.0, v1.1, v1.2, v1.3) and DTLS (v1.2)	Transport Layer Security (TLS) version 1.3 provides security for HTTP, FTP, MQTT and TCP communications. Embedded Datagram Transport Layer Security (DTLS) version 1.2 provides security for CoAP, LwM2M, MQTT-SN and UDP communications.
Jamming detection	Detects "artificial" interference that obscures the operator's carrier entitled to give access to the radio service and automatically reports the start and stop of such conditions to the application processor that can react accordingly.
Smart temperature supervisor	 Constant monitoring of the module board temperature: Warning notification when the temperature approaches predefined thresholds (see 4.2.14) Shutdown notified and forced when the temperature value is outside the specified range (shutdown suspended in case of an emergency call in progress) The feature can be enabled or disabled through the +USTS AT command.

Feature	Description
Last gasp	In case of power supply outage the cellular module can be configured through the +ULGASP AT command to send an alarm notification to a remote entity.
Network indication	GPIO configured to indicate the network status: registered home network, registered roaming, data call enabled, no service. The feature can be enabled through the +UGPIOC AT command.
Antenna detection	The ANT_DET pin provides antenna presence detection capability, evaluating the resistance from the ANT pin to GND by means of an external antenna detection circuit implemented on the application board. The feature can be enabled through the +UANTR AT command.
BIP	Bearer Independent Protocol for over-the-air SIM provisioning.
Dual stack IPv4/IPv6	Capability to move between Ipv4 and dual stack network infrastructures. IPv4 and IPv6 addresses can be used.
Firmware update Over AT commands (FOAT)	Firmware module update over AT command interface.
u-blox Firmware update Over The Air (uFOTA)	u-blox firmware module update over the LTE air interface client/server solution using LwM2M.
Power Saving Mode (PSM)	The Power Saving Mode (PSM) feature, defined in 3GPP Rel.13, allows further reduction of the module current consumption maximizing the amount of time a device can remain in PSM low power deep-sleep mode during periods of data inactivity.
eDRX	Extended mode DRX, based on 3GPP Rel.13, reduces the amount of signaling overhead decreasing the frequency of scheduled measurements and/or transmissions performed by the module in idle mode. This in turn leads to a reduction in the module power consumption while maintaining a perpetual connection with the base station.
Coverage Enhancement (mode A and mode B)	Coverage Enhancement modes introduced in 3GPP Rel.13 are used to improve the cell signal penetration.
LTE-M and NB-loT 3GPP release 14 features	For LTE-M: Larger max UL TBS (2984 bits instead of 1000 bits), Enhanced PUCCH repetition in CE mode B (64 and 128 repetition factor)
	For NB-IoT: Cat-NB2 higher data rate (with 2536 bit TBS), Release assistance indication, RRC connection re-establishment for the control plane CIoT EPS optimization, 2 UL/DL HARQ processes, Non-anchor paging and RACH, E-CID positioning

Table 3: Main features supported by LEXI-R520 modules

F

u-blox is extremely mindful of user privacy. When a position is sent to the CellLocate[®] server, u-blox is unable to track the SIM used or the specific device.

2 Interfaces

2.1 Power management

2.1.1 Module supply input (VCC)

LEXI-R520 modules must be supplied through the **VCC** pins by a proper external DC power supply providing a nominal voltage within the normal operating range (see Table 10). Voltage must be stable, because during operation the current drawn from **VCC** may vary significantly, based on the power consumption profile of the LTE Cat M1 and LTE Cat NB2 radio access technologies.

The three **VCC** pins of LEXI-R520 modules are internally connected to both the internal power amplifier and the internal power management unit, which integrates voltage regulators generating all the internal supply voltages needed by the module for its intended operations. This includes the supply voltage for the generic digital interfaces (**V_INT**) and for the SIM interface (**VSIM**).

It is important that the system power supply circuit is able to withstand the maximum pulse current during a transmit burst at maximum power level (see Table 12).

2.1.2 Generic digital interfaces supply output (V_INT)

LEXI-R520 modules provide a 1.8 V supply rail output on the V_{INT} pin, which is internally generated when the module is switched on, outside the ultra-low power deep-sleep mode. The same voltage domain is used internally to supply the generic digital interfaces of the module. The V_{INT} supply output can be used in place of an external discrete regulator.

It is recommended to provide accessible test points directly connected to the **V_INT** pin.

2.2 Antenna interfaces

2.2.1 Cellular antenna RF interface (ANT)

The **ANT** pin is the cellular RF antenna I/O interface, designed with 50 Ω characteristic impedance.

2.2.2 Cellular antenna detection (ANT_DET)

The **ANT_DET** pin is an analog to digital converter (ADC) input with a current source provided by the LEXI-R520 modules to sense the presence of the external cellular antenna (as an optional feature), evaluating the DC resistance to GND by means of an externally implemented circuit.

2.2.3 GPS antenna RF interface (ANT_GNSS)

The **ANT_GNSS** pin represents the RF input for the u-blox SpotNow A-GPS receiver, designed with 50 Ω characteristic impedance and with an internal DC block, suitable for both active and/or passive external GPS antennas.

2.2.4 GPS antenna or LNA control (ANT_ON)

The **ANT_ON** digital output pin is available to provide optional control for switching on/off the power supply to an external active GPS antenna or an external separate LNA. This feature is provided to help minimize power consumption and it can be enabled by dedicated AT command (see section 2.7).

2.3 System functions

2.3.1 Module power-on

When the LEXI-R520 modules are not powered, they can be switched on as following:

• Applying a voltage at the VCC module supply input within the operating range (see Table 10)

When the LEXI-R520 modules are in power-off mode (i.e. switched off, but with a valid voltage present at the **VCC** module supply input within the operating range reported in Table 10), they can be switched on as follows:

• Forcing a low level at the **PWR_ON** input pin, which is normally set high by an internal pull-up, for a valid time period (see section 4.2.6, module switch on).

When the LEXI-R520 modules are in low power PSM / eDRX deep-sleep mode, with a valid voltage present at the **VCC** module supply input within the operating range reported in Table 10, they can be woken up as follows:

• Forcing a low level at the **PWR_ON** input pin, which is normally set high by an internal pull-up, for a valid time period (see section 4.2.6, module wake-up from PSM / eDRX deep-sleep).

The **PWR_ON** line is intended to be driven by open drain, open collector or contact switch.

It is recommended to provide accessible test points directly connected to the **PWR_ON** input pin.

2.3.2 Module power-off

The proper graceful power-off procedure of the LEXI-R520 modules, with storage of the current parameter settings in module's non-volatile memory and a clean network detach, can be triggered by:

- AT+CPWROFF command
- Forcing a low pulse at the **PWR_ON** input pin, for a valid time period (see section 4.2.6, module normal graceful switch-off)

A faster power-off procedure of the LEXI-R520 modules, with storage of current parameter settings in the module's non-volatile memory, but without a clean network detach, can be triggered by:

- AT+CFUN=10 command
- Forcing a rising edge at the GPIO pin configured with faster power-off function (see section 2.7, faster switch-off)

An abrupt emergency hardware shutdown of the modules, without saving current parameter settings in the module's non-volatile memory and without clean network detach, can be executed by:

• Forcing a low pulse at the **PWR_ON** input pin, for a valid time period (see section 4.2.6, module emergency hardware shutdown)

An abrupt under-voltage shutdown occurs on the LEXI-R520 modules when the **VCC** supply is removed. If this event occurs, it is not possible to store the current parameter settings in the module's non-volatile memory or to perform a clean network detach.

An over-temperature or an under-temperature shutdown occurs on the LEXI-R520 modules when the temperature measured within the module reaches the dangerous area (see 4.2.14), if the optional smart temperature supervisor feature is enabled and configured by the dedicated AT command.

2.3.3 Module reset

LEXI-R520 modules can be reset (re-booted), saving current parameter settings in the module's non-volatile memory and performing a proper network detach, by:

• AT+CFUN=16 command. This causes a graceful software reset of the module.

An abrupt software reset of the module is executed by applying a low pulse at the **RESET_N** input pin, which is normally set high by an internal pull-up, for a valid time period (see section 4.2.8). The current parameter settings are not saved in the module's non-volatile memory and a proper network detach is not performed.

The **RESET_N** line is intended to be driven by open drain, open collector or contact switch.

It is recommended to provide accessible test point directly connected to the **RESET_N** input pin.

2.4 SIM

2.4.1 SIM interface

LEXI-R520 modules provide an interface on the **VSIM**, **SIM_IO**, **SIM_CLK**, and **SIM_RST** pins to connect an external SIM card/chip. Both 1.8 V and 3.0 V SIM types are supported. Activation and deactivation with an automatic voltage switch from 1.8 V to 3.0 V is implemented according to the ISO-IEC 7816-3 specifications.

2.4.2 SIM detection

The **GPIO6** pin of LEXI-R520 modules is a 1.8 V digital input which can be configured as an external interrupt to detect the SIM card presence (as a feature which can be optionally used), as intended to be properly connected to the mechanical switch of an external SIM card holder.

2.5 Serial communication

The LEXI-R520 module provides the following serial communication interfaces:

- UART interfaces, available for communications with host application processor (2.5.1)
- USB 2.0 compliant interface, available for diagnostics only (2.5.2)
- SPI interface, available for diagnostic (2.5.3)
- SDIO interface, available for diagnostic (2.5.4)
- I2C bus compatible interface, available for communications with external I2C devices (2.5.5)

2.5.1 UART interfaces

LEXI-R520 modules include 1.8 V unbalanced asynchronous serial interfaces for communication with external application host processor(s). UART interfaces can be configured by dedicated AT command in the following variants:

- Variant 0 (default configuration), consists of a single UART interface that supports AT commands, data communication, multiplexer protocol functionality, FW update by means of FOAT or by means of the u-blox EasyFlash tool, and provides the following lines:
 - Data lines (**RXD** as output, **TXD** as input),
 - Hardware flow control lines (CTS as output, RTS as input),
 - Modem status and control lines (DTR as input, RI as output)

- Variant 1, consists of a single UART interface that supports AT commands, data communication, multiplexer protocol functionality, FW update by means of FOAT or by means of the u-blox EasyFlash tool, and provides the following lines:
 - Data lines (**RXD** as output, **TXD** as input),
 - Hardware flow control lines (CTS as output, RTS as input),
 - Modem status and control lines (DTR as input, DSR as output, DCD as output, RI as output)
- Variants 2, 3 and 4, consists of two UART interfaces plus ring indication and DTR functions:
 - First primary UART interface supports AT commands, data communication, multiplexer protocol functionality, FW update by means of FOAT or by means of the u-blox EasyFlash tool, and provides the following lines:
 - Data lines (RXD as output, TXD as input),
 - Hardware flow control lines (CTS as output, RTS as input),
 - Second auxiliary UART interface supports AT commands (variant 2 only), data communication (variant 2 only), FW update by means of FOAT (variant 2 only), diagnostic trace logging (variant 3 only), and GNSS tunneling (variant 4 only), and provides the following lines:
 - Data lines (DCD as data output, DTR as data input),
 - Hardware flow control lines (**RI** as flow control output, **DSR** as flow control input),
 - Ring indication function over the GPIO pin configured with RI function (see section 2.7)

UART general features, valid for all variants, are:

- Serial port with RS-232 functionality conforming to the ITU-T V.24 recommendation [8], with CMOS compatible levels (0 V for low data bit or ON state, and 1.8 V for high data bit or OFF state)
- Hardware flow control (default value) or none flow control are supported
- UART power saving indication available on HW flow control output, if HW flow control is enabled: the line is driven to the OFF state when the module is not prepared to accept data by the UART
- One-shot autobauding is supported and it is enabled by default: automatic baud rate detection is performed only once, at module start up. After the detection, the module works at the fixed baud rate (the detected one) and the baud rate can only be changed via +IPR AT command
- The following baud rates are supported and can be auto detected: 9600 bit/s, 19200 bit/s, 38400 bit/s, 57600 bit/s, 115200 bit/s, 230400 bit/s, 460800 bit/s, 921600 bit/s
- The following baud rates are supported but cannot be auto detected: 3000000 bit/s, 3250000 bit/s
- The default frame format is 8N1 (8 data bits, no parity, 1 stop bit)
- The following frame formats are supported: 8N1, 8N2, 8E1, 8O1, 7N1, 7E1, 7O1

The UART interfaces can be conveniently configured through AT commands.

- It is highly recommended to provide accessible test points directly connected to the **TXD** and **RXD** pins for FW upgrade purpose.
- Accessible test points directly connected to the DCD and DTR pins may be provided for diagnostic purpose, alternatively to the highly recommended accessible test points provided on the USB interface pins.

2.5.1.1 Multiplexer protocol

LEXI-R520 modules include multiplexer functionality as per 3GPP TS 27.010 [6] on the primary UART interface physical link. This is a data link protocol which uses HDLC-like framing and operates between the module (DCE) and the application processor (DTE), allowing a number of simultaneous sessions over the physical link (primary UART).

When USIO variant 0 or 1 is set, the following virtual channels are defined:

- Channel 0: control channel
- Channel 1 3: AT commands / data communication
- Channel 4: GNSS tunneling

When USIO variant 2 is set, AT commands and data communication are available on the second auxiliary UART, and the following virtual channels are defined on the primary UART:

- Channel 0: control channel
- Channel 1 2: AT commands / data communication
- Channel 3: GNSS tunneling

When USIO variant 3 is set, diagnostic trace log is available on the second auxiliary UART, and the following virtual channels are defined on the primary UART:

- Channel 0: control channel
- Channel 1 3: AT commands / data communication
- Channel 4: GNSS tunneling

When USIO variant 4 is set, GNSS tunneling is available on the second auxiliary UART, and the following virtual channels are defined on the primary UART:

- Channel 0: control channel
- Channel 1 3: AT commands / data communication

2.5.2 USB interface

LEXI-R520 modules include a high-speed USB 2.0 compliant interface with a maximum 480 Mbit/s data rate according to the USB 2.0 specification [9]. The module itself acts as a USB device and can be connected to any USB host equipped with compatible drivers.

The USB interface is available for diagnostic purpose only.

The **USB_D+** / **USB_D-** lines carry the USB data and signaling, while the **VUSB_DET** pin represents the input to enable the USB interface by applying an external valid USB VBUS voltage (5.0 V typical).

It is highly recommended to provide accessible test points directly connected to the USB interface pins (VUSB_DET, USB_D+, USB_D-) for diagnostic purpose.

2.5.3 SPI interface

The SPI interface is not supported by current LEXI-R520 product version, except for diagnostic.

LEXI-R520 modules include a 1.8V Serial Peripheral Interface over the **SDIO_D0**, **SDIO_D1**, **SDIO_D2** and **SDIO_D3** pins, with SPI_MOSI, SPI_MISO, SPI_CLK and SPI_CS alternative function respectively, with the module acting as SPI host.

2.5.4 SDIO interface

The SDIO interface is not supported by current LEXI-R520 product version, except for diagnostic.

LEXI-R520 modules include a 1.8V 4-bit Secure Digital Input Output interface over the **SDIO_D0**, **SDIO_D1**, **SDIO_D2**, **SDIO_D3**, **SDIO_CLK** and **SDIO_CMD** pins, with the module acting a an SDIO host.

Accessible test points directly connected to the SDIO_D0, SDIO_D1, SDIO_D2 and SDIO_D3 pins may be provided for diagnostic purpose, alternatively to the highly recommended accessible test points provided on the USB interface pins.

2.5.5 I2C interface

LEXI-R520 modules include a 1.8V I2C-bus compatible interface over the **SDA** and **SCL** pins, available to communicate with an external u-blox GNSS receiver and/or with compatible external I2C devices: the LEXI-R520 module acts as an I2C host that can communicate with I2C devices in accordance with the I2C bus specifications [10].

2.6 ADC

LEXI-R520 modules include an Analog-to-Digital Converter input pin, **ADC**, configurable via a dedicated AT command.

2.7 GPIO

LEXI-R520 modules include pins that can be configured as general-purpose input/output or to provide custom functions as summarized in Table 4.

Function	Description	Default GPIO	Configurable GPIOs
General purpose output	Output to set the high or the low digital level	-	GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, ANT_ON
General purpose input	Input to sense high or low digital level	-	GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, ANT_ON
Network status indication	Output indicating cellular network status: registered, data transmission, no service	-	GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, ANT_ON
External GNSS supply enable	Output to enable/disable the supply of an external u-blox GNSS receiver connected to the LEXI-R520 module by I2C	-	GPIO2
External GNSS data ready	Input to sense when an external u-blox GNSS receiver connected to the LEXI-R520 module is ready for sending data over the I2C interface	-	GPIO3
SIM card detection	Input for SIM card physical presence detection, to optionally enable / disable SIM interface upon detection of external SIM card physical insertion / removal	-	GPIO6
Module status indication	Output indicating module status: power-off or deep-sleep mode versus idle, active or connected mode	-	GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, ANT_ON
Module operating mode indication	Output indicating module operating mode: power-off, deep-sleep or idle mode versus active or connected mode	-	GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, ANT_ON
Ring indicator	Output providing events indicator	-	GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, ANT_ON
Last gasp	Input to trigger last gasp notification	-	GPIO1, GPIO2, GPIO3, GPIO4, GPIO5
Faster switch-off	Input with internal pull-down to trigger a faster shutdown (as AT+CFUN=10) by applying a rising edge	-	GPIO1, GPIO2, GPIO3, GPIO4, GPIO5
ANT_ON	Output to control the supply of an external active GPS antenna and/or LNA, synced with SpotNow activities	-	ANT_ON
Pin disabled	Tri-state with an internal active pull-down enabled		GPIO1, GPIO2, GPIO3, GPIO4, GPIO5, GPIO6, ANT_ON

Table 4: GPIO custom functions configuration

2.8 Cellular antenna dynamic tuner interface

LEXI-R520 modules include two output pins (named **RFCTRL1** and **RFCTRL2**) that can optionally be used to control in real time an external antenna tuning IC, as the two pins change their output value dynamically according to the specific current LTE band in use by the module. Table 5 lists the default factory-programmed configuration that can be changed by dedicated AT command.

RFCTRL1	RFCTRL2	LTE frequency band in use
0	0	B71(<700 MHz)
0	1	B12, B13, B28, B85 (700800 MHz)
1	0	B5, B8, B18, B19, B20, B26 (800900 MHz)
1	1	B1, B2, B3, B4, B25, B66 (> 1000 MHz)

Table 5: LEXI-R520 modules antenna dynamic tuning truth table (default factory-programmed configuration)

2.9 Reserved pin (RSVD)

LEXI-R520 modules have a pin reserved for future use, marked as **RSVD**. This pin is to be left unconnected on the application board.

3 Pin definition

3.1 Pin assignment

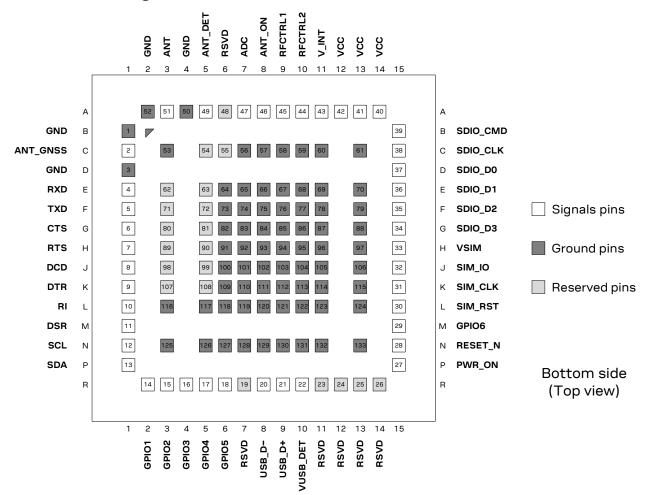


Figure 2: LEXI-R520 module pin assignment (top view)

ID	No	Name	Power domain	I/O	Description	Remarks		
A2	52	GND	-	N/A	Ground	All the GND pins must be connected to ground.		
A3	51	ANT	-	I/O	Cellular antenna	RF input/output for cellular Rx/Tx antenna. 50 Ω nominal impedance. See section 2.2.1 and 4.2.4 for details.		
A4	50	GND	-	N/A	Ground	All the GND pins must be connected to ground.		
A5	49	ANT_DET	ADC	I	Antenna detection Antenna presence detection function. See section 2.2.2 for functional description. See section 4.2.6 for detailed electrical specs.			
A6	48	RSVD	-	N/A	Reserved pin	Leave unconnected.		
Α7	47	ADC	ADC	I	ADC input	12-bit Analog to Digital Converter input. See section 2.6 for functional description. See section 4.2.13 for detailed electrical specs.		
A8	46	ANT_ON	GDI	0	GPS Antenna / LNA supply control	Digital output to optionally control the supply of an external active GPS antenna or LNA. Push-pull output type. See section 2.2.4 for functional description. See section 4.2.11 for detailed electrical specs.		

ID	No	Name	Power domain	I/O	Description	Remarks
A9	45	RFCTRL1	GDI	0	RF GPIO for cellular antenna tuning	Digital output to optionally control an antenna tuning IC. Push-pull output type. See section 2.8 for functional description. See section 4.2.11 for detailed electrical specs.
A10	44	RFCTRL2	GDI	0	RF GPIO for cellular antenna tuning	Digital output to optionally control an antenna tuning IC. Push-pull output type. See section 2.8 for functional description. See section 4.2.11 for detailed electrical specs.
A11	43	V_INT	-	0	Generic Digital Interfaces supply output	V_INT = 1.8 V (typical) supply generated by the module when is switched on, outside low power deep sleep mode. See section 2.1.2 for functional description. See section 4.2.2 for detailed electrical specs. Provide test point for diagnostic purposes.
A12	42	VCC	-	Ι	Module supply input	All VCC pins must be connected to external supply. See section 2.1.1 for functional description. See section 4.2.2 and 4.2.3 for detailed electrical specs.
A13	41	VCC	-	Ι	Module supply input	All VCC pins must be connected to external supply. See section 2.1.1 for functional description. See section 4.2.2 and 4.2.3 for detailed electrical specs.
A14	40	VCC	-	Ι	Module supply input	All VCC pins must be connected to external supply. See section 2.1.1 for functional description. See section 4.2.2 and 4.2.3 for detailed electrical specs.
B1	1	GND	-	N/A	Ground	All the GND pins must be connected to ground.
B15	39	SDIO_CMD	GDI	I/O	SDIO command	SDIO not supported by current product version. See section 2.5.4 for functional description. See section 4.2.11 for detailed electrical specs.
C1	2	ANT_GNSS	-	I	GPS antenna	RF input for GPS Rx antenna. 50 Ω nominal impedance. See section 2.2.2 and Table 2 for functional description.
СЗ	53	GND	-	N/A	Ground	All the GND pins must be connected to ground.
C5	54	RSVD	-	N/A	Reserved pin	Leave unconnected.
C6	55	RSVD	-	N/A	Reserved pin	Leave unconnected.
C7	56	GND	-	N/A	Ground	All the GND pins must be connected to ground.
C8	57	GND	-	N/A	Ground	All the GND pins must be connected to ground.
C9	58	GND	-	N/A	Ground	All the GND pins must be connected to ground.
C10	59	GND	-	N/A	Ground	All the GND pins must be connected to ground.
C11	60	GND	-	N/A	Ground	All the GND pins must be connected to ground.
C13	61	GND	-	N/A	Ground	All the GND pins must be connected to ground.
C15	38	SDIO_CLK	GDI	0	SDIO serial clock	SDIO not supported by current product version. See section 2.5.4 for functional description. See section 4.2.11 for detailed electrical specs.
D1	3	GND	-	N/A	Ground	All the GND pins must be connected to ground.
D15	37	SDIO_DO	GDI	I/O / O	SDIO serial data [0] / SPI_MOSI	SDIO not supported by current product version. Pin alternatively configurable as SPI_MOSI, for diagnostic. See section 2.5.4 for functional description. See section 4.2.11 for detailed electrical specs.
E1	4	RXD	GDI	0	UART data output	Circuit 104 in ITU-T V.24 (RxD data output, push-pull, idle high, active low). See section 2.5.1 for functional description. See section 4.2.11 for detailed electrical specs. Provide test point for FW upgrade purpose.

ID	No	Name	Power domain	I/O	Description	Remarks
E3	62	RSVD	-	N/A	Reserved pin	Leave unconnected.
E5	63	RSVD	-	N/A	Reserved pin	Leave unconnected.
E6	64	GND	-	N/A	Ground	All the GND pins must be connected to ground.
E7	65	GND	-	N/A	Ground	All the GND pins must be connected to ground.
E8	66	GND	-	N/A	Ground	All the GND pins must be connected to ground.
E9	67	GND	-	N/A	Ground	All the GND pins must be connected to ground.
E10	68	GND	-	N/A	Ground	All the GND pins must be connected to ground.
E11	69	GND	-	N/A	Ground	All the GND pins must be connected to ground.
E13	70	GND	-	N/A	Ground All the GND pins must be connected to ground.	
E15	36	SDIO_D1	GDI	I/O / I	SDIO serial data [1] / SPI_MISO	SDIO not supported by current product version. Pin alternatively configurable as SPI_MISO, for diagnostic. See section 2.5.4 for functional description. See section 4.2.11 for detailed electrical specs.
F1	5	TXD	GDI	Ι	UART data input	Circuit 103 in ITU-T V.24 (TxD data input, idle high, active low, with internal active pull-up enabled). See section 2.5.1 for functional description. See section 4.2.11 for detailed electrical specs. Provide test point for FW upgrade purpose.
F3	71	RSVD	-	N/A	Reserved pin	Leave unconnected.
F5	72	RSVD	-	N/A	Reserved pin	Leave unconnected.
F6	73	GND	-	N/A	Ground	All the GND pins must be connected to ground.
F7	74	GND	-	N/A	Ground All the GND pins must be connected to ground.	
F8	75	GND	-	N/A	Ground All the GND pins must be connected to ground.	
F9	76	GND	-	N/A		
F10	77	GND	-	N/A	Ground	All the GND pins must be connected to ground.
F11	78	GND	-	N/A	Ground	All the GND pins must be connected to ground.
F13	79	GND	-	N/A	Ground	All the GND pins must be connected to ground.
F15	35	SDIO_D2	GDI	I/O / O	SDIO serial data [2] / SPI_CLK	SDIO not supported by current product version. Pin is alternatively configurable as SPI_CLK, for diagnostic. See section 2.5.4 for functional description. See section 4.2.11 for detailed electrical specs.
G1	6	CTS	GDI	0	UART clear to send	Circuit 106 in ITU-T V.24 (CTS hardware flow control output, push-pull, idle high, active low). See section 2.5.1 for functional description.
						See section 4.2.11 for detailed electrical specs.
G3	80	RSVD	-	N/A	Reserved pin	Leave unconnected.
G5	81	RSVD	-	N/A	Reserved pin	Leave unconnected.
G6	82	GND	-	N/A	Ground	All the GND pins must be connected to ground.
G7	83	GND	-	N/A	Ground	All the GND pins must be connected to ground.
G8	84	GND	-	N/A	Ground	All the GND pins must be connected to ground.
G9	85	GND	-	N/A	Ground All the GND pins must be connected to ground.	
G10	86	GND	-	N/A	Ground All the GND pins must be connected to ground.	
G11	87	GND	-	N/A	Ground	All the GND pins must be connected to ground.
G13	88	GND	_	N/A	Ground	All the GND pins must be connected to ground.
G15	34	SDIO_D3	GDI	I/O / O	SDIO serial data [3] / SPI_CS	SDIO not supported by current product version. Pin alternatively configurable as SPI_CS, for diagnostic. See section 2.5.4 for functional description. See section 4.2.11 for detailed electrical specs.

ID	No	Name	Power domain	I/O	Description	Remarks
H1	7	RTS	GDI	I	UART request to send	Circuit 105 in ITU-T V.24 (RTS flow control input, idle high, active low, with internal active pull-up enabled). See section 2.5.1 for functional description. See section 4.2.11 for detailed electrical specs.
НЗ	89	RSVD	-	N/A	Reserved pin	Leave unconnected.
H5	90	RSVD	-	N/A	Reserved pin	Leave unconnected.
H6	91	GND	-	N/A	Ground	All the GND pins must be connected to ground.
H7	92	GND	-	N/A	Ground	All the GND pins must be connected to ground.
H8	93	GND	-	N/A	Ground	All the GND pins must be connected to ground.
H9	94	GND	-	N/A	Ground	All the GND pins must be connected to ground.
H10	95	GND	-	N/A	Ground	All the GND pins must be connected to ground.
H11	96	GND	-	N/A	Ground	All the GND pins must be connected to ground.
H13	97	GND	-	N/A	Ground	All the GND pins must be connected to ground.
H15	33	VSIM	-	0	SIM supply output	VSIM = 1.8 V (typical) or 3 V (typical) supply generated by the module according to the external SIM card type, when it is switched on, after the internal boot sequence, outside low power deep sleep mode. See section 2.4.1 for functional description. See section 4.2.9 for detailed electrical specs.
J1	8	DCD	GDI	0/ 0	UART data carrier detect / AUX UART data output	Circuit 109 in ITU-T V.24 (DCD output, push-pull, idle high, active low), alternatively settable as Second Auxiliary UART RXD (data output, push-pull, idle high, active low). See section 2.5.1 for functional description. See section 4.2.11 for detailed electrical specs.
JЗ	98	RSVD	-	N/A	Reserved pin	Leave unconnected.
J5	99	RSVD	-	N/A	Reserved pin	Leave unconnected.
J6	100	GND	-	N/A	Ground	All the GND pins must be connected to ground.
J7	101	GND	-	N/A	Ground	All the GND pins must be connected to ground.
J8	102	GND	-	N/A	Ground	All the GND pins must be connected to ground.
J9	103	GND	-	N/A	Ground	All the GND pins must be connected to ground.
J10	104	GND	-	N/A	Ground	All the GND pins must be connected to ground.
J11	105	GND	-	N/A	Ground	All the GND pins must be connected to ground.
J13	106	GND	-	N/A	Ground	All the GND pins must be connected to ground.
J15	32	SIM_IO	SIM	I/O	SIM data	Internal pull-up resistor to VSIM. See section 2.4.1 for functional description. See section 4.2.9 for detailed electrical specs.
К1	9	DTR	GDI	/ 	UART data terminal ready / AUX UART data input	Circuit 108/2 in ITU-T V. 24 (DTR input, idle high, active low, with internal active pull-up enabled), alternatively settable as second auxiliary UART TXD (data input, idle high, active low, with internal active pull-up enabled). See section 2.5.1 for functional description. See section 4.2.11 for detailed electrical specs.
КЗ	107	RSVD	-	N/A	Reserved pin	Leave unconnected.
K5	108	RSVD	-	N/A	Reserved pin	Leave unconnected.
K6	109	GND	-	N/A	Ground	All the GND pins must be connected to ground.
K7	110	GND	-	N/A	Ground	All the GND pins must be connected to ground.
K8	111	GND	-	N/A	Ground	All the GND pins must be connected to ground.
K9	112	GND	-	N/A	Ground	All the GND pins must be connected to ground.
K10	113	GND	-	N/A	Ground	All the GND pins must be connected to ground.
K11	114	GND	-	N/A	Ground	All the GND pins must be connected to ground.

ID	No	Name	Power domain	I/O	Description	Remarks
K13	115	GND	-	N/A	Ground	All the GND pins must be connected to ground.
K15	31	SIM_CLK	SIM	0	SIM clock	See section 2.4.1 for functional description. See section 4.2.9 for detailed electrical specs.
L1	10	RI	GDI	0/ 0	UART ring indicator / AUX UART clear to send	Circuit 125 in ITU-T V.24 (RI output, push-pull, idle high, active low), alternatively configurable as second auxiliary UART CTS (HW flow control output, push-pull, idle high, active low). See section 2.5.1 for functional description. See section 4.2.11 for detailed electrical specs.
L3	116	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L5	117	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L6	118	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L7	119	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L8	120	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L9	121	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L10	122	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L11	123	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L13	124	GND	-	N/A	Ground	All the GND pins must be connected to ground.
L15	30	SIM_RST	SIM	0	SIM reset	See section 2.4.1 for functional description. See section 4.2.9 for detailed electrical specs.
M1	11	DSR	GDI	0/ I	• •	Circuit 107 in ITU-T V.24 (DSR output, push-pull, idle high, active low), alternatively configurable as second auxiliary UART RTS (HW flow control input, idle high, active low, with internal active pull-up enabled). See section 2.5.1 for functional description. See section 4.2.11 for detailed electrical specs.
M15	29	GPIO6	GDI	I/O	Pin for SIM card detection	Configurable GPIO, alternatively configurable as input pin for SIM card detection. Push-pull output type. See sections 2.4.2 and 2.7 for functional description. See section 4.2.11 for detailed electrical specs.
N1	12	SCL	I2C	0	I2C bus clock line	Fixed open drain. Internal active pull-up. Idle high, active low. See section 2.5.5 for functional description. See section 4.2.10 for detailed electrical specs.
NЗ	125	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N5	126	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N6	127	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N7	128	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N8	129	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N9	130	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N10	131	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N11	132	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N13	133	GND	-	N/A	Ground	All the GND pins must be connected to ground.
N15	28	RESET_N	GDI	I	External reset input	Internal active pull-up. Active low. See section 2.3.3 for functional description. See section 4.2.8 for detailed electrical specs. Provide test point for diagnostic purposes.
P1	13	SDA	12C	I/O	I2C bus data line	Fixed open drain. Internal active pull-up. Idle high, active low. See section 2.5.5 for functional description. See section 4.2.10 for detailed electrical specs.

ID	No	Name	Power domain	I/O	Description	Remarks
P15	27	PWR_ON	POS	I	Power-on / power-off input	Internal active pull-up. Active low. See section 2.3.1 and 2.3.2 for functional description. See section 4.2.6 for detailed electrical specs. Provide test point for diagnostic purposes.
R2	14	GPIO1	GDI	I/O	GPIO	Configurable GPIO. Push-pull output type. See section 2.7 for functional description. See section 4.2.11 for detailed electrical specs.
R3	15	GPIO2	GDI	I/O	GPIO	Configurable GPIO. Push-pull output type. See section 2.7 for functional description. See section 4.2.11 for detailed electrical specs.
R4	16	GPIO3	GDI	I/O	GPIO	Configurable GPIO. Push-pull output type. See section 2.7 for functional description. See section 4.2.11 for detailed electrical specs.
R5	17	GPIO4	GDI	I/O	GPIO	Configurable GPIO. Push-pull output type. See section 2.7 for functional description. See section 4.2.11 for detailed electrical specs.
R6	18	GPIO5	GDI	I/O	GPIO	Configurable GPIO. Push-pull output type. See section 2.7 for functional description. See section 4.2.11 for detailed electrical specs.
R7	19	RSVD	-	N/A	Reserved pin	Leave unconnected.
R8	20	USB_D-	USB	I/O	USB Data Line D-	 90 Ω nominal differential impedance. Pull-up, pull-down and series resistors, as required by the USB 2.0 specifications [9], are part of the USB pin driver and shall not be provided externally. USB interface supported for diagnostic purpose only. See section 2.5.2 for functional description. See section 4.2.12 for detailed electrical specs. Provide test point for diagnostic purposes.
R9	21	USB_D+	USB	I/O	USB Data Line D+	 90 Ω nominal differential impedance. Pull-up, pull-down and series resistors, as required by USB 2.0 specifications [9], are part of the USB pin driver and shall not be provided externally. USB interface supported for diagnostic purpose only. See section 2.5.2 for functional description. See section 4.2.12 for detailed electrical specs. Provide test point for diagnostic purposes.
R10	22	VUSB_DET	USB	I	USB detect input	Input for VBUS (5 V typical) USB supply sense. USB interface supported for diagnostic purpose only. See section 2.5.2 for functional description. See section 4.2.12 for detailed electrical specs. Provide test point for diagnostic purposes.
R11	23	RSVD	-	N/A	Reserved pin	Leave unconnected.
R12	24	RSVD	-	N/A	Reserved pin	Leave unconnected.
R13	25	RSVD	-	N/A	Reserved pin	Leave unconnected.
R14	26	RSVD	-	N/A	Reserved pin	Leave unconnected.

Table 6: LEXI-R520 pin-out

See appendix A for an explanation of the abbreviations and terms used.

4 Electrical specifications

- Stressing the device above one or more of the ratings listed in the Absolute Maximum Rating section may cause permanent damage. These are stress ratings only. Operating the module at these or at any conditions other than those specified in the Operating Conditions sections (section 4.2) of the specification should be avoided. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
- Electrical characteristics are defined according to the verification on a representative number of samples or according to the simulation.
- TWhere application information is given, it is advisory only and does not form part of the specification.

4.1 Absolute maximum rating

🕝 Limiting values given below are in accordance with Absolute Maximum Rating System (IEC 134).

Symbol	Description	Condition	Min.	Max.	Unit
VCC	Module supply voltage	Input voltage at VCC pins	-0.3	4.6	V
		Input voltage ramp at VCC pins		130	mV/µs
VUSB_DET	USB detection pin	Input voltage at VUSB_DET pin	-0.3	5.5	V
		Input voltage ramp at VUSB_DET pin		650	mV/µs
USB	USB D+/D- pins	Input voltage at USB interface pins	-0.3	3.6	V
GDI	Generic digital interfaces	Input voltage at generic digital interfaces pins	-0.3	2.3	V
I2C	I2C interface	Input voltage at I2C interface pins	-0.3	2.3	V
SIM	SIM interface	Input voltage at SIM interface pins	-0.3	3.5	V
POS	Power-on input	Input voltage at PWR_ON pin	-0.3	4.6	V
ADC	Antenna detection input	Input DC voltage at ADC and ANT_DET pins	-0.3	1.5	V
P_RF	RF power	Input RF power at ANT and ANT_GNSS pins		3	dBm
Rho_ANT	Antenna ruggedness	Output RF load mismatch ruggedness at ANT pin		10:1	VSWF
Tstg	Storage temperature		-40	+85	°C

Table 7: Absolute maximum ratings

The product is not protected against overvoltage or reversed voltages. If necessary, voltage spikes exceeding the voltage specifications given in the table above, must be limited to values within the specified boundaries by using appropriate protection devices.

4.1.1 Maximum ESD

Parameter	Min	Max	Unit	Remarks
ESD sensitivity for all pins		1000	V	Human Body Model according to JS-001-2017
		500	V	Charged Device Model according to JS-002-2018

Table 8: Maximum ESD ratings

△ u-blox cellular modules are electrostatic sensitive devices and require special precautions when handling. See section 7.3 for ESD handling instructions.

4.2 Operating conditions

- Unless otherwise indicated, all operating condition specifications are at an ambient temperature of +25 °C.
- Operation beyond the operating conditions is not recommended and extended exposure beyond them may affect device reliability.

4.2.1 Operating temperature range

Parameter	Min.	Тур.	Max.	Unit	Remarks
Normal operating temperature	-20	+25	+65	°C	Operating within 3GPP / ETSI specifications
Extended operating temperature	-40		+85	°C	Operating with possible slight deviation in RF performance outside normal operating range

Table 9: Environmental conditions

4.2.2 Supply/power pins

Symbol	Parameter	Min.	Typical	Max.	Unit
VCC	Module supply normal operating input voltage ¹	3.3	3.8	4.4	V
	Module supply extended operating input voltage ²	3.0		4.5	V

Table 10: Input characteristics of the Supply/Power pins

Symbol	Parameter	Min.	Typical	Max.	Unit
VSIM	SIM supply output voltage with 1.8 V external SIM		1.8		V
	SIM supply output voltage with 3.0 V external SIM		3.0		V
V_INT	Generic Digital Interfaces supply output voltage		1.8		V
	Generic Digital Interfaces supply output current capability			70	mA

Table 11: Output characteristics of the Supply/Power pins

¹ Operating within 3GPP / ETSI specifications.

² Operating with possible slight deviation in RF performance outside normal operating range. The input voltage has to be above the extended operating range minimum limit to switch-on the module and to avoid possible switch-off of the module.

 $^{^3}$ Typical values with matched antenna, VCC = 3.8 V

4.2.3 Current consumption

Mode	Condition	Tx power	Min	Тур ³	Max	Unit
Power-off mode	Average current value (power-off mode)			0.5		μA
PSM deep-sleep mode	Average current value (PSM deep-sleep mode)			0.5		μA
Cyclic deep-sleep / active mode (+UPSV: 1)	Average current value (rock bottom)			0.5		μA
	Average current value (DRX = 2.56 s, PTW = 20.48 s, eDRX = 655.36 s, +UPSMVER: 8)			180		μA
Cyclic idle / active mode (+UPSV: 1)	Average current value (rock bottom)			1.4		mA
	Average current value (DRX = 2.56 s, PTW = 20.48 s, eDRX = 655.36 s, +UPSMVER: 0)			1.4		mA
	Average current value (DRX = 2.56 s, no eDRX)		1.8		mA	
	Average current value (DRX = 1.28 s, no eDRX)			2.2		mA
ldle mode (+UPSV: 1)	Average current value (airplane mode, +CFUN: 0)			1.4		mA
Active mode (+UPSV: 0)	Average current value (DRX = 1.28 s)			15		mA
LTE Cat M1 connected mode	Average current value	Minimum (–50 dBm)		95		mA
	(Tx/Rx data transfer)	0 dBm		100		mA
		8 dBm		115		mA
		14 dBm		140		mA
		20 dBm		170		mA
		Maximum (23 dBm)		195		mA
	Maximum current value (during Tx only)	Maximum (23 dBm)		395		mA
LTE Cat NB2 connected mode	Average current value	Minimum (–50 dBm)		85		mA
	(Tx/Rx data transfer)	0 dBm		90		mA
		8 dBm		100		mA
		14 dBm		110		mA
		20 dBm		125		mA
		Maximum (23 dBm)		135		mA
	Maximum current value (during Tx only)	Maximum (23 dBm)		395		mA

Table 12: VCC current consumption of the LEXI-R520 module

 $^{^3}$ Typical values with matched antenna, VCC = 3.8 V

4.2.4 LTE RF characteristics

The LTE Cat M1 / NB2 bands supported by LEXI-R520 modules are defined in Table 2, while Table 13 describes the frequency ranges for each LTE band as per 3GPP TS 36.521-1 [7].

Frequency range Frequency range FDD band 28 (700 MHz)Uplink758 Downlink803 748MHzModule transmitsFDD band 28 (700 MHz)Downlink758803MHzModule receivesFrequency range FDD band 55 (700 MHz)Uplink698716MHzModule receivesFrequency range FDD band 20 (800 MHz)Uplink777787MHzModule receivesFrequency range FDD band 20 (800 MHz)Uplink746756MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink814849MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink869875MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink824849MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink825890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink17101755MHzModule receives <t< th=""><th>Parameter</th><th></th><th>Min.</th><th>Max.</th><th>Unit</th><th>Remarks</th></t<>	Parameter		Min.	Max.	Unit	Remarks
Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>	Frequency range	Uplink	663	698	MHz	Module transmits
FDD band 12 (700 MHz) Downlink 729 746 MHz Module receives Frequency range FDD band 28 (700 MHz) Downlink 758 803 MHz Module transmits Frequency range FDD band 85 (700 MHz) Uplink 698 716 MHz Module receives Frequency range FDD band 85 (700 MHz) Uplink 728 746 MHz Module transmits Forequency range FDD band 12 (750 MHz) Uplink 728 746 MHz Module receives Frequency range FDD band 20 (800 MHz) Uplink 832 862 MHz Module receives Frequency range FDD band 26 (850 MHz) Uplink 814 849 MHz Module receives Frequency range FDD band 26 (850 MHz) Uplink 815 830 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 824 849 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 824 849 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 824	FDD band 71 (600 MHz)	Downlink	617	652	MHz	Module receives
Frequency range Frequency range FDD band 28 (700 MHz)Uplink729 Downlink748 748MHzModule transmitsFDD band 28 (700 MHz)Downlink758803MHzModule receivesFrequency range FDD band 35 (700 MHz)Uplink698716MHzModule receivesFrequency range FDD band 13 (750 MHz)Uplink728746MHzModule receivesFrequency range FDD band 20 (800 MHz)Uplink777787MHzModule transmitsFDD band 20 (800 MHz)Downlink746756MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink814849MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink814849MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink860875MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink830845MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 6 (1700 MHz)Uplink17101755MHzModule receivesFrequency r	Frequency range	Uplink	699	716	MHz	Module transmits
FDD band 28 (700 MHz) Downlink 758 803 MHz Module receives Frequency range FDD band 85 (700 MHz) Uplink 698 716 MHz Module transmits Frequency range FDD band 13 (750 MHz) Uplink 728 746 MHz Module receives Frequency range FDD band 20 (800 MHz) Uplink 777 787 MHz Module receives Frequency range FDD band 20 (800 MHz) Uplink 832 862 MHz Module receives Frequency range FDD band 26 (850 MHz) Uplink 814 849 MHz Module receives Frequency range FDD band 18 (850 MHz) Uplink 815 830 MHz Module receives Frequency range FDD band 5 (850 MHz) Uplink 815 830 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 824 849 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 875 890 MHz Module receives Frequency range FDD band 8 (900 MHz) Uplink 1710 <	FDD band 12 (700 MHz)	Downlink	729	746	MHz	Module receives
Trequency range FDD band 85 (700 MHz)Uplink698716MHzModule transmitsFDD band 85 (700 MHz)Downlink728746MHzModule receivesFrequency range FDD band 13 (750 MHz)Uplink777787MHzModule receivesFrequency range FDD band 20 (800 MHz)Uplink746756MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink832862MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink814849MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink869894MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink869845MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink17101755MHzModule receivesFrequency range FDD band 4 (1700 MHz)Uplink17101755MHzModule receivesFrequency range FDD band 6 (1	Frequency range	Uplink	703	748	MHz	Module transmits
FDD band 85 (700 MHz) Downlink 728 746 MHz Module receives Frequency range FDD band 13 (750 MHz) Uplink 777 787 MHz Module transmits Frequency range FDD band 20 (800 MHz) Uplink 832 862 MHz Module receives Frequency range FDD band 26 (850 MHz) Uplink 814 849 MHz Module receives Frequency range FDD band 26 (850 MHz) Uplink 815 830 MHz Module receives Frequency range FDD band 18 (850 MHz) Uplink 815 830 MHz Module receives Frequency range FDD band 5 (850 MHz) Uplink 860 875 MHz Module ransmits FDD band 19 (850 MHz) Downlink 869 894 MHz Module ransmits Frequency range FDD band 19 (850 MHz) Uplink 830 845 MHz Module receives Frequency range FDD band 8 (900 MHz) Uplink 875 890 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 1710 1755	FDD band 28 (700 MHz)	Downlink	758	803	MHz	Module receives
Frequency range FDD band 13 (750 MHz)Uplink772787MHzModule receivesFrequency range FDD band 20 (800 MHz)Uplink746756MHzModule receivesFrequency range FDD band 20 (800 MHz)Uplink832862MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink814849MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink860875MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink869894MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 9 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 8 (900 MHz)Uplink875890MHzModule receivesFrequency range FDD band 6 (1700 MHz)Uplink17101755MHzModule ransmitsFDD band 3 (1800 MHz)Uplink17101785MHzModule ransmitsFDD band 6 (1700 MHz)Uplink17101785MHzModule ransmitsFDD band 6 (1700 MHz)Uplink17101785MHzModule ransmitsFDD band 6 (1700 MHz)Uplink18601910MHz<	Frequency range	Uplink	698	716	MHz	Module transmits
FDD band 13 (750 MHz) Downlink 746 756 MHz Module receives Frequency range FDD band 20 (800 MHz) Uplink 832 862 MHz Module transmits Frequency range FDD band 26 (850 MHz) Uplink 814 849 MHz Module receives Frequency range FDD band 18 (850 MHz) Uplink 814 849 MHz Module receives Frequency range FDD band 5 (850 MHz) Uplink 815 830 MHz Module receives Frequency range FDD band 5 (850 MHz) Uplink 824 849 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 830 845 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 830 845 MHz Module receives Frequency range FDD band 19 (850 MHz) Uplink 875 890 MHz Module receives Frequency range FDD band 3 (800 MHz) Uplink 875 890 MHz Module ransmits Downlink 2110 225 960 MHz	FDD band 85 (700 MHz)	Downlink	728	746	MHz	Module receives
Frequency range FDD band 20 (800 MHz)Uplink832862MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink814849MHzModule transmitsFDD band 26 (850 MHz)Downlink859894MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink815830MHzModule transmitsFDD band 18 (850 MHz)Downlink860875MHzModule transmitsFrequency range FDD band 18 (850 MHz)Uplink860875MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink869894MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink869894MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 4 (1700 MHz)Uplink875890MHzModule receivesFrequency range FDD band 6 (1700 MHz)Uplink17101755MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101780MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 2 (1900 MHz) <td>Frequency range</td> <td>Uplink</td> <td>777</td> <td>787</td> <td>MHz</td> <td>Module transmits</td>	Frequency range	Uplink	777	787	MHz	Module transmits
FDD band 20 (800 MHz)Downlink791821MHzModule receivesFrequency range FDD band 26 (850 MHz)Uplink814849MHzModule transmitsDownlink859894MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink815830MHzModule transmitsFrequency range FDD band 5 (850 MHz)Uplink824849MHzModule transmitsFrequency range FDD band 5 (850 MHz)Uplink869894MHzModule transmitsFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule transmitsFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule transmitsFoot band 8 (900 MHz)Uplink875890MHzModule transmitsFrequency range FDD band 4 (1700 MHz)Uplink17101755MHzModule transmitsFDD band 4 (1700 MHz)Uplink21102155MHzModule transmitsFrequency range FDD band 3 (1800 MHz)Uplink17101780MHzModule transmitsFDD band 3 (1800 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFDD band 2 (1900 MHz)Uplink18501915MHzModule transmitsFDD band 2 (1900 MHz)	FDD band 13 (750 MHz)	Downlink	746	756	MHz	Module receives
Frequency range FDD band 26 (850 MHz)Uplink814849MHzModule receivesFrequency range FDD band 18 (850 MHz)Uplink859894MHzModule ransmitsFDD band 18 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink860875MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink869894MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink869894MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 8 (900 MHz)Uplink875890MHzModule receivesFrequency range FDD band 6 (1700 MHz)Uplink17101755MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101780MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 2 (Frequency range	Uplink	832	862	MHz	Module transmits
FDD band 26 (850 MHz) Downlink 859 894 MHz Module receives Frequency range FDD band 18 (850 MHz) Uplink 815 830 MHz Module transmits Frequency range FDD band 5 (850 MHz) Uplink 824 849 MHz Module receives Frequency range FDD band 5 (850 MHz) Uplink 869 894 MHz Module receives Frequency range FDD band 9 (850 MHz) Uplink 830 845 MHz Module receives Frequency range FDD band 9 (850 MHz) Uplink 830 845 MHz Module receives Frequency range FDD band 9 (800 MHz) Uplink 875 890 MHz Module receives Frequency range FDD band 8 (900 MHz) Uplink 875 890 MHz Module receives Frequency range FDD band 6 (1700 MHz) Uplink 1710 1755 MHz Module receives Frequency range FDD band 3 (1800 MHz) Uplink 1710 1780 MHz Module receives Frequency range FDD band 2 (1900 MHz) Uplink 1805 <	FDD band 20 (800 MHz)	Downlink	791	821	MHz	Module receives
Frequency range FDD band 18 (850 MHz)Uplink815830MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink860875MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink824849MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink869894MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink830845MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink875890MHzModule receivesFrequency range FDD band 8 (900 MHz)Uplink875890MHzModule receivesFrequency range FDD band 6 (1700 MHz)Uplink17101755MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101780MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink18051880MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501915MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501915MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501915MHzModule receivesFrequenc	Frequency range FDD band 26 (850 MHz)	Uplink	814	849	MHz	Module transmits
FDD band 18 (850 MHz)Downlink860875MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink824849MHzModule transmitsFrequency range FDD band 9 (850 MHz)Uplink830845MHzModule receivesFrequency range FDD band 9 (850 MHz)Uplink875890MHzModule receivesFrequency range 		Downlink	859	894	MHz	Module receives
Frequency range FDD band 5 (850 MHz)Uplink824849MHzModule receivesFrequency range FDD band 5 (850 MHz)Uplink869894MHzModule transmitsFrequency range FDD band 19 (850 MHz)Uplink830845MHzModule transmitsDownlink875890MHzModule transmitsFrequency range FDD band 8 (900 MHz)Uplink875890MHzModule receivesFrequency range FDD band 8 (900 MHz)Uplink880915MHzModule transmitsFourname FDD band 4 (1700 MHz)Uplink17101755MHzModule transmitsFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule transmitsFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 25 (1900 MHz)	Frequency range FDD band 18 (850 MHz)	Uplink	815	830	MHz	Module transmits
FDD band 5 (850 MHz)Downlink869894MHzModule receivesFrequency range FDD band 19 (850 MHz)Uplink830845MHzModule transmitsFrequency range FDD band 8 (900 MHz)Uplink875890MHzModule receivesFrequency range FDD band 8 (900 MHz)Uplink880915MHzModule receivesFrequency range 		Downlink	860	875	MHz	Module receives
Frequency range FDD band 19 (850 MHz)Uplink830845MHzModule receivesFrequency range FDD band 8 (900 MHz)Uplink875890MHzModule receivesFrequency range FDD band 8 (900 MHz)Uplink880915MHzModule receivesFrequency range FDD band 4 (1700 MHz)Uplink17101755MHzModule receivesFrequency range FDD band 4 (1700 MHz)Uplink17101755MHzModule receivesFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18051880MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501915MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18301990MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18301915MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18301995MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink19301995MHzModule receives	Frequency range	Uplink	824	849	MHz	Module transmits
FDD band 19 (850 MHz)Downlink875890MHzModule receivesFrequency range FDD band 8 (900 MHz)Uplink880915MHzModule transmitsDownlink925960MHzModule receivesFrequency range FDD band 4 (1700 MHz)Uplink17101755MHzModule transmitsDownlink21102155MHzModule receivesFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501915MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501915MHzModul	FDD band 5 (850 MHz)	Downlink	869	894	MHz	Module receives
Frequency range FDD band 8 (900 MHz)Uplink875890MHzModule receivesFrequency range FDD band 4 (1700 MHz)Uplink925960MHzModule receivesFrequency range FDD band 4 (1700 MHz)Uplink17101755MHzModule receivesFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule receivesFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink17101785MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule receivesFrequency range FDD band 1 (2100 MHz)Uplink19301995MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink19301995MHzModule receivesFrequency range FDD band 1 (2100 MHz)Uplink19301995MHzModule receivesFrequency range FDD band 2 (1200 MHz)Uplink19301995MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink19301995MHzModule receivesFrequency range FDD band 21 (2100 MHz)Uplink19201980MHzModule receives </td <td>Frequency range</td> <td>Uplink</td> <td>830</td> <td>845</td> <td>MHz</td> <td>Module transmits</td>	Frequency range	Uplink	830	845	MHz	Module transmits
FDD band 8 (900 MHz)Downlink925960MHzModule receivesFrequency range FDD band 4 (1700 MHz)Uplink17101755MHzModule transmitsFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule transmitsFor puency range FDD band 66 (1700 MHz)Uplink17101780MHzModule transmitsFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18051880MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 2 (1200 MHz)Uplink19201980MHzModule transmitsFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	FDD band 19 (850 MHz)	Downlink	875	890	MHz	Module receives
Frequency range FDD band 4 (1700 MHz)Uplink17101755MHzModule transmitsFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule transmitsFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule transmitsFrequency range FDD band 66 (1700 MHz)Uplink17101785MHzModule transmitsFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	Frequency range	Uplink	880	915	MHz	Module transmits
FDD band 4 (1700 MHz)Downlink21102155MHzModule receivesFrequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule transmitsFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18051880MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink19301995MHzModule transmitsFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	FDD band 8 (900 MHz)	Downlink	925	960	MHz	Module receives
Frequency range FDD band 66 (1700 MHz)Uplink17101780MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule transmitsFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18051880MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	Frequency range	Uplink	1710	1755	MHz	Module transmits
FDD band 66 (1700 MHz)Downlink21102200MHzModule receivesFrequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18051880MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	FDD band 4 (1700 MHz)	Downlink	2110	2155	MHz	Module receives
Frequency range FDD band 3 (1800 MHz)Uplink17101785MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18051880MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink19301995MHzModule transmitsFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	Frequency range	Uplink	1710	1780	MHz	Module transmits
FDD band 3 (1800 MHz)Downlink18051880MHzModule receivesFrequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink19301990MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink19301995MHzModule receivesFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	FDD band 66 (1700 MHz)	Downlink	2110	2200	MHz	Module receives
Frequency range FDD band 2 (1900 MHz)Uplink18501910MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink19301990MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range FDD band 25 (1900 MHz)Uplink19301995MHzModule receivesFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	Frequency range	Uplink	1710	1785	MHz	Module transmits
FDD band 2 (1900 MHz)Downlink19301990MHzModule receivesFrequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule transmitsFrequency range Frequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	FDD band 3 (1800 MHz)	Downlink	1805	1880	MHz	Module receives
Frequency range FDD band 25 (1900 MHz)Uplink18501915MHzModule receivesFrequency range FDD band 1 (2100 MHz)Uplink19201980MHzModule transmits	Frequency range	Uplink	1850	1910	MHz	Module transmits
FDD band 25 (1900 MHz) Downlink 1930 1995 MHz Module receives Frequency range Uplink 1920 1980 MHz Module transmits FDD band 1 (2100 MHz) Image: Description of the section of th	FDD band 2 (1900 MHz)	Downlink	1930	1990	MHz	Module receives
Frequency range Uplink 1920 1980 MHz Module transmits	Frequency range	Uplink	1850	1915	MHz	Module transmits
EDD band 1 (2100 MHz)	FDD band 25 (1900 MHz)	Downlink	1930	1995	MHz	Module receives
FDD band 1 (2100 MHz) Downlink 2110 2170 MHz Module receives	Frequency range	Uplink	1920	1980	MHz	Module transmits
	FDD band 1 (2100 MHz)	Downlink	2110	2170	MHz	Module receives

Table 13: LTE operating RF frequency bands

LEXI-R520 modules include a UE Power Class 3 LTE Cat M1 / NB2 transmitter (see Table 2) and an LTE receiver, with output power and characteristics according to 3GPP TS 36.521-1 [7].

The LEXI-R520 module's LTE receiver characteristics are compliant to 3GPP TS 36.521-1 [7], with LTE conducted receiver sensitivity performance described in Table 14 and Table 15.

Parameter	Min.	Typical	Max.	Unit	Remarks
Receiver input sensitivity Band 71 (600 MHz)		-108.0		dBm	Without repetitions
Receiver input sensitivity Band 12 / 28 / 85 (700 MHz)		-108.0		dBm	Without repetitions
Receiver input sensitivity Band 13 (750 MHz)		-108.0		dBm	Without repetitions
Receiver input sensitivity Band 20 (800 MHz)		-108.0		dBm	Without repetitions
Receiver input sensitivity Band 5 / 18 / 19 / 26 (850 M⊦	łz)	-107.0		dBm	Without repetitions
Receiver input sensitivity Band 8 (900 MHz)		-107.0		dBm	Without repetitions
Receiver input sensitivity Band 3 (1800 MHz)		-107.0		dBm	Without repetitions
Receiver input sensitivity Band 2 / 25 (1900 MHz)		-107.0		dBm	Without repetitions
Receiver input sensitivity Band 1 / 4 / 66 (2100 MHz)		-107.0		dBm	Without repetitions

Condition: 50 Ω source, throughput > 95%, QPSK modulation, other settings as per clause 7.3EA of 3GPP TS 36.521-1 [7]

Table 14: LTE Cat M1 receiver sensitivity performance

Parameter	Min.	Typical	Max.	Unit	Remarks
Receiver input sensitivity Band 71 (600 MHz)		-116.0		dBm	Without repetitions
Receiver input sensitivity Band 12/28/85 (700 MHz)		-116.0		dBm	Without repetitions
Receiver input sensitivity Band 13 (750 MHz)		-116.0		dBm	Without repetitions
Receiver input sensitivity Band 20 (800 MHz)		-115.5		dBm	Without repetitions
Receiver input sensitivity Band 5 / 18 / 19 / 26 (850 MHz)		-115.5		dBm	Without repetitions
Receiver input sensitivity Band 8 (900 MHz)		-115.0		dBm	Without repetitions
Receiver input sensitivity Band 3 (1800 MHz)		-114.0		dBm	Without repetitions
Receiver input sensitivity Band 2 / 25 (1900 MHz)		-115.0		dBm	Without repetitions
Receiver input sensitivity Band 1 / 4 / 66 (2100 MHz)		-115.0		dBm	Without repetitions

Condition: 50 Ω source, throughput > 95%, QPSK modulation, other settings as per clause 7.3F of 3GPP TS 36.521-1 [7]

Table 15: LTE Cat NB2 receiver sensitivity performance

Parameter	Specification
Receiver type	u-blox SpotNow A-GPS
GNSS signals	GPS L1C/A (1575.42 MHz)
Time-To-Fix (TTF) ⁴	1 s
Sensitivity ⁵	–148 dBm
Position accuracy ⁶	5 m
Fix energy ⁴	60 uWh

4.2.5 SpotNow characteristics

Table 16: SpotNow characteristics and performance

4.2.6 ANT_DET pin

Pin Name	Parameter	Min.	Тур.	Max.	Unit	Remarks
ANT_DET	Output DC current pulse value		3		μA	
	Output DC current pulse time length		20		ms	

Table 17: ANT_DET pin characteristics

4.2.7 PWR_ON pin

Parameter	Min.	Typical	Max.	Unit	Remarks
Low-level input	-0.3		0.3	V	
Pull-up resistance		100		kΩ	Integrated pull-up to internal rail (typ. 1.2 V)
Low-level input current		-15		μA	
PWR_ON low time	0.1		1.0	S	Low time to trigger module switch on from power-off mode
	0.1		1.0	S	Low time to trigger module wake-up from deep-sleep
	1.5			S	Low time to trigger module normal graceful switch off
	17			s	Low time to trigger module emergency hardware shutdowr

Table 18: PWR_ON pin characteristics

4.2.8 RESET_N pin

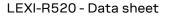

Min.	Typical	Max.	Unit	Remarks
	1.8			Digital I/O Interfaces supply (V_INT)
-0.3		0.5	V	
-18	-32	-56	μA	
100			ms	Low time to trigger module reset / reboot
	-0.3 -18	-0.3 -18 -32	1.8 -0.3 0.5 -18 -32 -56	1.8 -0.3 0.5 V -18 -32 -56 μA

Table 19: RESET_N pin characteristics

⁴ Commanded starts; all satellites at -130 dBm; aiding available.

⁵ Good external LNA; room temperature.

⁶ CEP, 50%, static, -130 dBm, > 6 SVs.

4.2.9 SIM pins

The SIM pins are a dedicated interface to the external SIM card/chip. The electrical characteristics fulfill the regulatory specification requirements. The values in Table 20 are for information only.

Parameter	Min.	Тур.	Max.	Unit	Remarks
Internal supply domain for		1.8		V	VSIM, with external 1.8 V SIM type
SIM interface		3.0		V	VSIM, with external 3.0 V SIM type
Low-level input	-0.3		0.2*VSIM	V	
High-level input	0.6*VSIM		VSIM+0.3	V	
Low-level output		0.0		V	
High-level output		VSIM		V	
Internal pull-up resistor on SIM_IO		4.7		kΩ	Internal pull-up to VSIM supply
Clock frequency on SIM_CLK		3.13		MHz	

Table 20: SIM pins characteristics

4.2.10 I2C pins

I2C lines (**SCL** and **SDA**) are compliant to the I2C-bus standard mode specification. See the I2C-bus specification [10] for detailed electrical characteristics.

Parameter	Min	Typical	Max	Unit	Remarks
Internal supply for I2C domain		1.8		V	Digital I/O Interfaces supply (V_INT)
Low-level input	-0.3		0.5	V	
High-level input	1.3		2.1	V	
Low-level output		0.0		V	
Pull-up input current		-450		μA	

Table 21: I2C pins characteristics

4.2.11 Generic Digital Interfaces pins

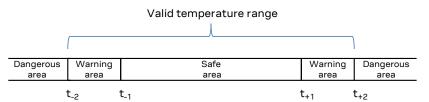
Parameter	Min	Typical	Max	Unit	Remarks
Internal supply for GDI domain		1.8		V	Digital I/O Interfaces supply (V_INT)
Low-level input	-0.3		0.5	V	
High-level input	1.3		2.1	V	
Low-level output		0.0	0.4	V	
High-level output	1.4	1.8		V	
Input leakage current			1	μA	0 V < V _{IN} < 1.8 V
Output high driver strength	3.28	5.22	7.92	mA	V _{OUT} = 1.4
Output low driver strength	3.02	5.41	8.63	mA	V _{OUT} = 0.4
Pull-up input current	-18	-32	-56	μA	
Pull-down input current	15	30	56	μA	

Table 22: GDI pins characteristics

4.2.12 USB pins

USB data lines (**USB_D+** / **USB_D-**) are compliant with the USB 2.0 high-speed specification. See the Universal Serial Bus specification revision 2.0 [9] for detailed electrical characteristics. The values in Table 23 related to USB 2.0 high-speed physical layer specifications are for information only.

Parameter	Min.	Typical	Max.	Unit	Remarks
VUSB_DET pin, High-level input	4.40	5.00	5.25	V	
High-speed squelch detection threshold (input differential signal amplitude)	100		150	mV	
High speed disconnect detection threshold (input differential signal amplitude)	525		625	mV	
High-speed data signaling input common mode voltage range	-50		500	mV	
High-speed idle output level	–10		10	mV	
High-speed data signaling output high level	360		440	mV	
High-speed data signaling output low level	–10		10	mV	
Chirp J level (output differential voltage)	700		1100	mV	
Chirp K level (output differential voltage)	-900		-500	mV	


Table 23: USB pins characteristics

4.2.13 ADC pin

Parameter	Min.	Typical	Max.	Unit	Remarks
Resolution		12		Bits	
Input voltage range	0.2		1.2	V	
Input resistance		5		MΩ	With respect to GND

Table 24: Analog to Digital Converter input pin (ADC) characteristics

4.2.14 Smart temperature supervisor

Figure 3: Temperature range and limits

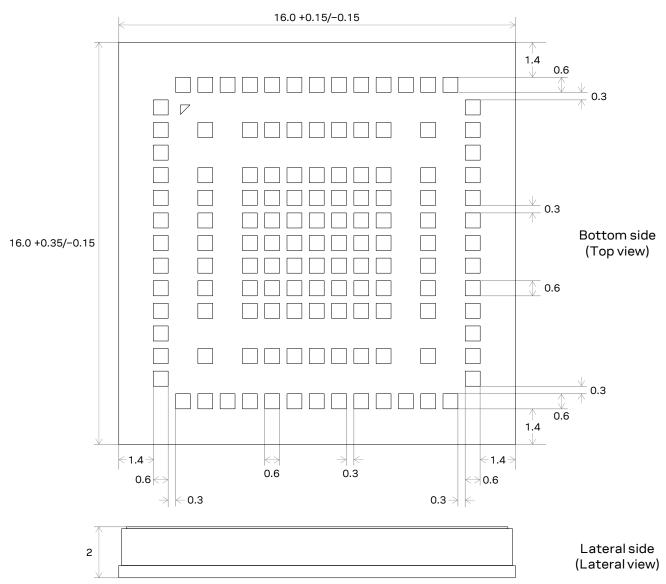

Symbol	Parameter	Temperature
t2	Low temperature shutdown	–40 °C
t-1	Low temperature warning	–30 °C
t+1	High temperature warning	+77 °C
t+2	High temperature shutdown	+97 ℃

Table 25: Thresholds definition for the "Smart temperature supervisor" feature on the LEXI-R520 modules

The sensor measures the board temperature inside the shield, which can differ from the ambient temperature.

5 Mechanical specifications

Figure 4: LEXI-R520 dimensions, typical values [mm]

- Actual geometries of the pads may depend on related implementation of the solder resist mask openings and the underlying copper layer.
- For information regarding Footprint and Paste Mask recommended for the application board integrating the cellular module, see the LEXI-R520 system integration manual [2].

6 Qualification and approvals

6.1 Reliability tests

Reliability tests for LEXI-R520 modules are executed according to u-blox qualification policy, based on AEC-Q104 standard.

6.2 Approvals

LEXI-R520 modules comply with the Directive 2011/65/EU of the European Parliament and the Council on the Restriction of Use of certain Hazardous Substances in Electrical and Electronic Equipment (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

LEXI-R520 modules are RoHS 3 compliant.

No natural rubbers, hygroscopic materials, or materials containing asbestos are employed.

 Table 26 summarizes the main approvals planned for LEXI-R520 modules.

Certification	LEXI-R520	
CE Europe	٠	
FCC United Sates	•	
FCC ID	XPYUBX23KM02	
ISED Canada	•	
ISED Certification Number	8595A-UBX23KM02	
GITEKI Japan	•	
NCC Taiwan	•	
ACMA RCM Australia	•	
PTCRB	•	
GCF	•	
AT&T with FirstNet	•	
Verizon	•	
T-Mobile USA	•	
Telus	•	
Telstra	•	
Orange	•	
Deutsche Telekom	•	

Table 26: LEXI-R520 main certification approvals summary

7 Product handling & soldering

7.1 Packaging

LEXI-R520 modules are delivered as hermetically sealed, reeled tapes to enable efficient production, production lot set-up and tear-down. For more information about packaging, see the u-blox package information user guide [3].

7.1.1 Reels

LEXI-R520 modules are deliverable in quantities of 500 pieces on a reel. The modules are delivered using reel type A4 described in the u-blox package information user guide [3].

Quantities of less than 500 pieces are also available. Contact u-blox for more information.

7.1.2 Tapes

LEXI-R520 modules are delivered on the tape illustrated in Figure 5.

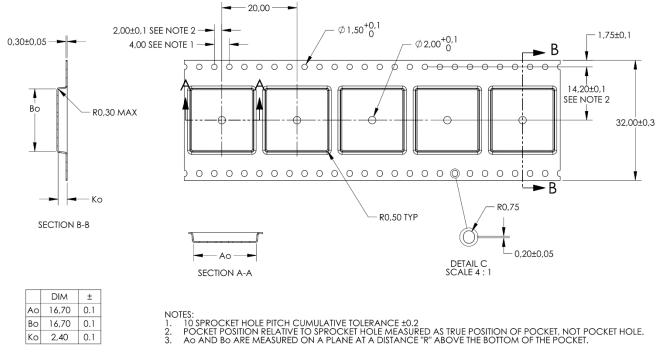


Figure 5: LEXI-R520 modules tape

7.2 Moisture sensitivity levels

▲ LEXI-R520 modules are moisture sensitive devices (MSD) in accordance to the IPC/JEDEC specification.

The Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions required. LEXI-R520 modules are rated at MSL level 4. For more information regarding moisture sensitivity levels, labeling, storage and drying, see the u-blox package information user guide [3].

For the MSL standard, see IPC/JEDEC J-STD-020 (can be downloaded from www.jedec.org).

7.3 ESD precautions

▲ LEXI-R520 modules contain highly sensitive electronic circuitry and are Electrostatic Sensitive Devices (ESD). Handling LEXI-R520 modules without proper ESD protection may destroy or damage them permanently.

△ Ensure ESD precautions are implemented during handling of the module.

Electrostatic discharge (ESD) is the sudden and momentary electric current that flows between two objects at different electrical potentials caused by direct contact or induced by an electrostatic field. The term is usually used in the electronics and other industries to describe momentary unwanted currents that may cause damage to electronic equipment.

Table 8 details the maximum ESD ratings of the LEXI-R520 modules.

Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates LEXI-R520 modules.

ESD precautions should be appropriately implemented on the application board where the module is mounted.

A Failure to observe these precautions can result in severe damage to the device!

7.4 Reflow soldering

Reflow profiles are to be selected according to u-blox recommendations, as illustrated in details in the system integration manual [2].

A Failure to observe these recommendations can result in severe damage to the device!

8 Labeling and ordering information

8.1 Product labeling

The labels of LEXI-R520 modules include important product information, as described in this section. Figure 6 provides an illustrative example of LEXI-R520 modules' label, which includes for example: the u-blox logo (acting also as pin 1 indicator), production date, Pb-free marking, product type number, IMEI number, certification info, and production country of the module.

Figure 6: Illustrative example of LEXI-R520 modules' label

8.2 Explanation of codes

Three different product code formats are used. The **Product name** is used in documentation such as this data sheet and identifies all the u-blox products, independent of packaging and quality grade. The **Ordering code** includes options and quality, while the **Type number** includes the hardware and firmware versions. Table 27 details these 3 different formats:

Format	Structure
Product name	PPPP-TGVV
Ordering code	PPPP-TGVV-MMQ
Type number	PPPP-TGVV-MMQ-XX

Table 27: Product code formats

Table 28 explains the parts of the product code.

Code	Meaning	Example
PPPP	Form factor	LEXI
TG	Platform (Technology and Generation)	R5
	 Dominant technology: G = GSM, U = UMTS, C = CDMA, N = NB-IoT (LTE Cat NB1/NB2), R = LTE low data rate (Cat M1, Cat 1, Cat 1bis), L = LTE high data rate (Cat 3 and above) Generation: 19 	
VV	Variant function set based on the same platform: 0099	20
MM	Major product version: 0099	02
Q	Product grade: C = standard, B = professional, A = automotive	В
XX	Minor product version: 0099	Default value: 00

Table 28: Part identification code

8.3 Ordering information

Ordering No.	Product
LEXI-R520-02B	LTE Cat M1 / NB2 module for multi-region use. Designed with integrated u-blox SpotNow A-GPS receiver, with dedicated RF input for GPS antenna. 16.0 x 16.0 mm

Table 29: Product ordering codes

Appendix

A Glossary

Abbreviation	Definition
3GPP	3 rd Generation Partnership Project
ACMA	Australian Communications and Media Authority
ADC	Analog to Digital Converter
A-GPS	Assisted Global Positioning System
Cat	Category
CE	Coverage Enhancement
CE	European Conformity
CEP	Circular Error Probable
CLK	Clock
CloT	Cellular Internet of Things
CMOS	Complementary Metal-Oxide-Semiconductor
CoAP	Constrained Application Protocol
CTS	Clear To Send
DC	Direct Current
DCD	Data Carrier Detect
DL	Down Link (Reception)
DRX	Discontinuous Reception
DSR	Data Set Ready
DTE	Data Terminal Equipment
DTLS	Datagram Transport Layer Security
DTR	Data Terminal Ready
E-CID	Enhanced Cell Identity
eDRX	Extended Discontinuous Reception
EPS	Evolved Packet System
ESD	Electrostatic Discharge
E-UTRA	Evolved Universal Terrestrial Radio Access
FCC	Federal Communications Commission United States
FDD	Frequency Division Duplex
FOAT	Firmware (update) Over AT commands
FOTA	Firmware (update) Over-The-Air
FTP	File Transfer Protocol
FW	Firmware
GCF	Global Certification Forum
GDI	Generic Digital Interface
GITEKI	Gijutsu kijun tekigō shōmei - Technical standard conformity certification (Japan)
GND	Ground
GNSS	Global Navigation Satellite System
GPIO	General Purpose Input/Output
GPS	Global Positioning System
HARQ	Hybrid Automatic Repeat Request
HDLC	High-level Data Link Control

HTMHydraw Fractoransfer ProtocolHWHardwareHWHardwareHWHardwareHCInterintional Electrochenical CommissionHECInterintional Electrochenical CommissionH2CInterintional Mobile Equipment IdentityH2SInterintional Mobile Equipment IdentityH2SInterintional Mobile Equipment IdentityH2SOInternational Mobile Equipment IdentityH2SOInternational Protocol Development CanadaH2NALow Noise AmplifierLAALow Noise AmplifierLAAMachine TheodocolMATMachine TheodocolMATMachine TheodocolMATMachine TheodocolMAA <th>Abbreviation</th> <th>Definition</th>	Abbreviation	Definition
D Identifier IEC Inter-Intigrated Circuit I2C Inter-IC Soud IXE International ID Economic Development Canada ISD International Telecommunications Union ILGA Land Grid Array ITE Long-Term Evolution - enhanced Machine Type Communication ITE-M Long-Term Evolution - enhanced Machine Type Communication ILM2M Lightweight Machine-Intervola MCT Message Queuing Telemetry Transport MCT Message Queuing Telemetry Transport for Sensor Networks MDT Message Queuing Telemetry Transport for Sensor Networks MSL Molsture Sensitive Device MSL Molsture Sensitive Device MSL Molsture Sensitive Device NA Nat Applicable NUA Natioral Communications Commission Taiwan NCC National Communications Co	НТТР	HyperText Transfer Protocol
ECInternational Electrotechnical CommissionI2CInter-IC SoundI2SInter-IC SoundI2SInter-IC SoundI2SInter-IC SoundIMEIInternational Mobile Equipment IdentityIMEIInternational Cognalization for StandardizationITUInternational Cognalization for StandardizationITUInternational Cognalization for StandardizationITUInternational Cognalization for StandardizationITUInternational Cognalization for StandardizationILRALaw Noise AmpifierLEWALow Power Wide AreaLTELong-Term EvolutionLTEALong-Term Evolution - enhanced Machine Type CommunicationLMM2MLightweight Machine-to-Machine protocolMM2MMachine to Machine protocolMM2MMachine to Machine protocolMSDMoisture Sensitivity LevelMQTT-SNMessage Queuing Telemetry TransportMQTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitivity LevelMUXMoltplexerN/ANot ApplicableN/ANot ApplicableN/ANot ApplicablePCBPrinted Circuit BoardPCBPrinted Circuit BoardPCSPower On SignalPCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access ChannelRACHRadio Access ChannelRACHRadio Access ChannelRACHRadio Access Chan	HW	Hardware
12C Inter-Integrated Circuit 12S Inter-CS Sound 1/O Input/Output 1/NEI International Mobile Equipment Identity 1/SED Invovation, Science and Economic Development Canada 1/SO International Organization for Standardization 1/TU International Telecommunications Union 1/EA Land Grid Array LNA Low Noise Amplifier LPWA Low Power Wide Area LTE Long-Term Evolution LTE Long-Term Evolution LTE Long-Term Evolution LWA2M Machine to Machine protocol M2M Machine to Machine M2T Message Queuing Telemetry Transport M2T Message Queuing Telemetry Transport M2T Moisture Sensitive Device M3L Moisture Sensitive Device M3L Moisture Sensitive Device M3L Moisture Sensitive Device M4D Natrowaband Internet of Things NCC National Communications Commission Taiwan No Number PCB Printed Circuit Beard PCN Power On Signal PCS Power On Signal PCS Power Saving Mode PTORE POST type Certiffic	ID	Identifier
Inter-IC Sound I/O Input/Output IMEI International Mobile Equipment Identity ISED Innovation, Science and Economic Development Canada ISO International Organization for Standardization ITU International Organization for Standardization ITU International Organization for Standardization ITU International Telecommunications Union LGA Land Grid Aray LNA Low Noise Amplifier LFM Long-Term Evolution LTE Long-Term Evolution enhanced Machine Type Communication LWM2M Lightweight Machine-to-Machine protocol MM2M Machine to Machine MOTT-SN Message Queuing Telemetry Transport MOTT-SN Message Queuing Telemetry Transport for Sensor Networks MDT Message Queuing Telemetry Transport for Sensor Networks MDX Multiplexer N/A Not Applicable NLX Multiplexer N/A Not Applicable NR-GC National Communications Commission Taiwan No Number PCB Printed Circuit Board PCN Protoctt Change Notification / Sample Delivery Note / Information Note PDS Power Saving Mode PTCRB PCS Type Ce	IEC	International Electrotechnical Commission
I/OInput/OutputINREIInternational Mobile Equipment IdentityISEDInnovation, Science and Economic Development CanadaISOInternational Telecommunications UnionLGALand Griganization for StandardizationITUInternational Telecommunications UnionLGALand Griganization for StandardizationLFMLow Noise AmplifierLPWALow Noise AmplifierLTELong-Term Evolution - enhanced Machine Type CommunicationLTMALingtweight Machine-to-Machine protocolM2MMachine to MachineM0TTMessage Queuing Telemetry TransportMOTTMessage Queuing Telemetry Transport for Sensor NetworksMSDMolisture Sensitive DeviceMUXMultiplexerN/ANot ApplicableNANNational Communication Commission TalwanNoNumberPGBPrinted Oircuit BoardPCRProver Saving ModePTGRBPOST ype Certification / Sample Delivery Note / Information NotePOSPower Gaving ModePTGRBPOST ype Certification Review BoardPUCCHPhysical LUINK Control ChannelQPSKQuadrature Phase Shift Keying modulationRACMRadio Access ChannelRATRadio	12C	Inter-Integrated Circuit
IMEL International Mobile Equipment Identity ISED Innovation, Science and Economic Development Canada ISO International Tolecommunications for Standardization ITU International Tolecommunications Union LGA Land Grid Array LNA Low Noise Amplifier LPWA Low Power Wide Area LTE Long-Term Evolution - enhanced Machine Type Communication LTE-M Long-Term Evolution - enhanced Machine Type Communication MAMM Machine to-Machine protocol MAZM Machine to-Machine protocol MOTT Message Queuing Telemetry Transport for Sensor Networks MSD Moisture Sensitive Device MSL Moisture Sensitive Device MSL Moisture Sensitive Level MUX Multiplexer N/A Nt Applicable NB-IoT Narrowband Internet of Things NCC National Communication / Sample Delivery Note / Information Note POS Power On Signal PPS Pube Per Second PSM Power Saving Mode PTGAUE Tonaley Notification / Sample Deliv	125	Inter-IC Sound
ISEDInnovation, Science and Economic Development CanadaISOInternational Organization for StandardizationITUInternational Irelecommunications UnionLGALand Grid ArrayLNALow Noise AmplifierLPWALow Power Wide AreaLTELong-Term EvolutionLTE-MLong-Term EvolutionLMAMLightweight Machine-to-Machine protocolMQMMachine to MachineMQTTMessage Queuing Telemetry TransportMQTTMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMUXMultiplexerN/ANatoplicableN/ANational Communication Sommission TelwanNONumberPCBPrinted Circuit BoardPCNProduct Circuit BoardPCRPower On SignalPDSPulse Per SecondPSMQueatrure Phases Mit Key Information NotePOSPower On SignalPUCRHPysical Uplink Control ChannelQPSKQueatrure Phase Shift Key ImodulationRACHRadio Access TechnologyRCHRadio Access TechnologyRCHRadio Access TechnologyRCHRadio Access CentrolRICRadio Access CentrolRICRadio Interface LayerRICRadio Resource ControlRICReal Time ClockRTSReeption	I/O	Input/Output
ISOInternational Organization for StandardizationITUInternational Telecorrunnications UnionLGALand Grid ArrayLNALow Noise AmplifierLPWALow Power Wide AreaLTELong-Term EvolutionLTELong-Term Evolution - enhanced Machine Type CommunicationLMALightweight Machine-to-Machine protoolMM2MLightweight Machine-to-Machine protoolMOTTMessage Queuing Telemetry TransportMOTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMSLMoisture Sensitive DeviceMSLMoisture Sensitive DeviceMSLMoisture Sensitive DeviceNAMNot ApplicableNSLMoisture Sensitive DeviceNGCNational Communications Commission TaiwanNGCNational Communications Commission TaiwanNGCNational Communication Sample Delivery Note / Information NotePGSPower On SignalPSMPoles Per SecondPSMPoles Per SecondPSMPoles Per Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQUSCHRadin Access TechnologyRACHRadio Access ChannelRACHRadio Access ChannelRACHRadio Access ChannelRCMRegulatory Compliance MarkRFRadio Access ChannelRCMRegulatory Compliance MarkRFRadio Access ChannelRICRadio Access	IMEI	International Mobile Equipment Identity
TTUInternational Telecommunications UnionLGALand Grid ArrayLNALow Noise AmplifierLPWALow Noise AmplifierLPWALow Fower Wide AreaLTELong-Term EvolutionLTE.MLong-Term Evolution – enhanced Machine Type CommunicationLMAMLightweight Machine-to-Machine protocolMQMMachine to MachineMOTTMessage Oucuing Telemetry TransportMOTTMessage Oucuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitivity LevelMUXMultiplexerN/ANot ApplicableN/ANot ApplicableNCCNational Communications Commission TalwanNoNumberPCBPrinted Circuit BoardPCSPower On SignalPPSPulse Pre SecondPDKPower Saving ModePTCRBPCS Type Certification Review BoardPUCRDPhysical Uplink Control ChannelRACHRandom Access ChannelsRACHRadio Access ChannelsRACHRadio Access ChannelsRACHRadio Resource ControlRCCRalio BrequencyRILRalio Irefrace LayerRCCRalio BrequencyRILRadio Resource ControlRCReal Time ClockRCReception	ISED	Innovation, Science and Economic Development Canada
LGALand Grid ArrayLNALow Noise AmplifierLPWALow Power Wide AreaLTELong-Term EvolutionLTE-MLong-Term Evolution - enhanced Machine Type CommunicationLMM2MLightweight Machine-to-Machine protocolMQTMMachine to MachineMQTTMessage Queuing Telemetry TransportMQTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMSLMoisture Sensitive DeviceMUXMultiplexerN/ANot ApplicableNR-ONarrowband Internet of ThingsNCCNational Communications Commission TalwanNoNumberPCSPower Saving ModePTSRPOwer Saving ModePTGRPOstype Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access ChannelRACHRadio Access ChannelRACHRadio Access ChannelRACHRadio Access ChannelRACHRadio Interface LayerRILRadio Interface LayerRILRadio Interface LayerRICRadio Resource ControlRTCRegutory ControlRTCRegutory ControlRTCRegutor CostrolRTARecotortRTReception	ISO	International Organization for Standardization
LNALow Noise AmplifierLPWALow Power Wide AreaLTELong-Term EvolutionLTELong-Term Evolution – enhanced Machine Type CommunicationLTE-MLightweight Machine-to-Machine protocolM2MMachine to MachineMOTTMessage Queuing Telemetry TransportMQTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMolsture Sensitive DeviceMSLMoisture Sensitive DeviceMUXMultiplexerN/ANot ApplicableNANat ApplicableNCCNational Internet of ThingsNCCNational Communications Commission TalwanNoNumberPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPTSRPLS Per SecondPUCCHPhysical Uplink Control ChannelOPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access ChannelRATRadio Access ChannelRATRadio Access ChannelRATRadio Access ChannelRATRadio Access ControlRATRadio Resource ControlRILRain RusticatorRILRadio Interface LayerRICRadio Interface LayerRICRadio Interface LayerRICRadio Interface LayerRICRadio Interface LayerRICReeption	ITU	International Telecommunications Union
LPWALow Power Wide AreaLTELong-Term EvolutionLTE-MLong-Term Evolution - enhanced Machine Type CommunicationLWM2MLightweight Machine-to-Machine protocolMQM1Machine to MachineMQTTMessage Queuing Telemetry TransportMQTTMessage Queuing Telemetry Transport for Sensor NetworksMSDMolsture Sensitive DeviceMSLMolsture Sensitive DeviceMUXMultigeverN/ANd ApplicableN/ANat ApplicableNRCNational Communications Commission TaiwanNCNumberPCBPrinted Circuit BoardPCSPower On SignalPFCRBPulse Per SecondPCKHPhysica Ulpink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access TechnologyRCHRadio Access TechnologyRILRadio Interface LayerRILRadio Interface LayerRILRadio Interface LayerRILRadio Interface LayerRICRadio Interface LayerRICRadio Resource ControlRTRadio Resource ControlRTRadio Interface LayerRICRadio Resource ControlRTReception	LGA	Land Grid Array
LTELong-Term EvolutionLTE-MLong-Term Evolution - enhanced Machine Type CommunicationLuM2MLightweight Machine-to-Machine protocolM2MMachine to MachineMQTTMessage Queuing Telemetry TransportMQTTMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMIXMultiplexerMUXMultiplexerNANot ApplicableNANat ApplicableNCCNational Communications Commission TaiwanNCNumberPCBPrinted Circuit BoardPCNPower On SignalPSAPower On SignalPTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelOPSKQuadrature Phase Shift Keying modulationRACHRadio Access ChannelRACHRadio Access ChannelRILRadio Interface LayerRILRadio Interface LayerRILRadio Interface LayerRICRegulatory ControlRICRadio Resource ControlRICRadio Resource ControlRICRadio Resource ControlRICRadio Interface LayerRICRadio Resource ControlRICResputionRICRadio Resource ControlRICRespution ControlRICRespution ControlRICRadio Resource ControlRICRespution ControlRICRespution ControlRICRespution ControlRIC <t< td=""><td>LNA</td><td>Low Noise Amplifier</td></t<>	LNA	Low Noise Amplifier
LTE-MLong-Term Evolution – enhanced Machine Type CommunicationLWM2MLightweight Machine-to-Machine protocolMQTMMessage Queuing Telemetry TransportMQTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMSLMoisture Sensitive DeviceMUXMultiplexerN/ANot ApplicableNB-IoTNarrowband Internet of ThingsNCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCSPower On SignalPPSPulse Per SecondPSKQuedrature Phase Shift Keying modulationRACHRandom Access TechnologyRACHRadio Access TechnologyRCMRedio Interface LayerRILRadio Access ControlRILRadio Interface LayerRILRadio Interface Layer <trr>RIL<td< td=""><td>LPWA</td><td>Low Power Wide Area</td></td<></trr>	LPWA	Low Power Wide Area
LuM2MLightweight Machine-to-Machine protocolM2MMachine to MachineMQTTMessage Queuing Telemetry TransportMQTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMSLMoisture Sensitive DeviceMUXMultiplexerN/ANot ApplicableNECNational Communications Commission TaiwanNCNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPSMPower On SignalPTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio Interface LayerRILRadio Interface LayerRICRadio Interface LayerRICRadio Interface LayerRICRequest To SendRICRequest To SendRICReception	LTE	Long-Term Evolution
M2MMachine to MachineMQTTMessage Queuing Telemetry TransportMQTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMSLMoisture Sensitivity LevelMUXMultiplexerN/ANot ApplicableNB-IoTNarrowband Internet of ThingsNCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRandon Access TechnologyRCMRegulatory Compliance MarkRFRadio Access TechnologyRILRaio Interface LayerRILRaio Interface LayerRICRadio Resource ControlRTSReceptionRaceRadio Resource ControlRTSReception	LTE-M	Long-Term Evolution – enhanced Machine Type Communication
MQTTMessage Queuing Telemetry TransportMQTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMSLMoisture Sensitivity LevelMUXMultiplexerN/ANot ApplicableNR-OMNor ApplicableNCCNational Communications Commission TaiwanNCNumberPC8Printed Circuit BoardPC9Power On SignalPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRILRadio Interface LayerRRCRadio Resource ControlRTSRequest To SendRXRequest To SendRXReception	LwM2M	Lightweight Machine-to-Machine protocol
MQTT-SNMessage Queuing Telemetry Transport for Sensor NetworksMSDMoisture Sensitive DeviceMSLMoisture Sensitivity LevelMUXMultiplexerN/ANot ApplicableNB-IoTNarrowband Internet of ThingsNCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPPSPulse Per SecondPTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRILRing IndicatorRILRadio Interface LayerRRCReal Time ClockRTSRequest To SendRXReception	M2M	Machine to Machine
MSDMoisture Sensitive DeviceMSLMoisture Sensitivity LevelMUXMultiplexerN/ANot ApplicableNB-loTNarrowband Internet of ThingsNCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPSPulse Per SecondPSMPower Saving ModePUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio IrequencyRILRadio IrequencyRILRadio Irefrace LayerRTCReal Prime ClockRTSRequest To SendRxReception	MQTT	Message Queuing Telemetry Transport
MSLMoisture Sensitivity LevelMUXMultiplexerN/ANot ApplicableNB-IoTNarrowband Internet of ThingsNCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRILRadio Interface LayerRTCReal Time ClockRTSRequest To SendRxReception	MQTT-SN	Message Queuing Telemetry Transport for Sensor Networks
MUXMultiplexerN/ANot ApplicableNB-IoTNarrowband Internet of ThingsNCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPSPulse Per SecondPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRILRadio Interface LayerRRCRadio Resource ControlRTSRequest To SendRxReception	MSD	Moisture Sensitive Device
N/ANot ApplicableNB-IoTNarrowband Internet of ThingsNCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPPSPulse Per SecondPSMPower Saving ModePUCCHPhysical Uplink Control ChannelOPSKOuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio Interface LayerRILRadio Interface LayerRTCRadio Resource ControlRTSRequest To SendRxReception	MSL	Moisture Sensitivity Level
NB-IoTNarrowband Internet of ThingsNCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPPSPulse Per SecondPSMPower Saving ModePUCCHPhysical Uplink Control ChannelOPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRACHRegulatory Compliance MarkRFRadio FrequencyRILRaio Interface LayerRRCRadio Resource ControlRTSRequest To SendRxReception	MUX	Multiplexer
NCCNational Communications Commission TaiwanNoNumberPCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPDSPulse Per SecondPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRCMRegulatory Compliance MarkRFRadio FrequencyRILRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTSRequest To SendRxReception	N/A	Not Applicable
NoNumberPCBPrinted Circuit BoardPCMProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPDSPulse Per SecondPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelOPSKOuadrature Phase Shift Keying modulationRACHRandom Access ChannelRACHRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	NB-IoT	Narrowband Internet of Things
PCBPrinted Circuit BoardPCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPDSPulse Per SecondPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRILRaio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSReceptionRxReception	NCC	National Communications Commission Taiwan
PCNProduct Change Notification / Sample Delivery Note / Information NotePOSPower On SignalPOSPower On SignalPPSPulse Per SecondPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelOPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRIRing IndicatorRILRadio Interface LayerRRCReal Time ClockRTSRequest To SendRxReception	No	Number
POSPower On SignalPPSPulse Per SecondPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelOPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio Interface LayerRILRadio Interface LayerRRCReal Time ClockRTSRequest To SendRxReception	PCB	Printed Circuit Board
PPSPulse Per SecondPSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelOPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	PCN	Product Change Notification / Sample Delivery Note / Information Note
PSMPower Saving ModePTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelOPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRIRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	POS	Power On Signal
PTCRBPCS Type Certification Review BoardPUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRIRing IndicatorRRCRadio Interface LayerRRCReal Time ClockRTSRequest To SendRxReception	PPS	Pulse Per Second
PUCCHPhysical Uplink Control ChannelQPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRIRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	PSM	Power Saving Mode
QPSKQuadrature Phase Shift Keying modulationRACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRIRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	PTCRB	PCS Type Certification Review Board
RACHRandom Access ChannelRATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRIRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	PUCCH	Physical Uplink Control Channel
RATRadio Access TechnologyRCMRegulatory Compliance MarkRFRadio FrequencyRIRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	QPSK	Quadrature Phase Shift Keying modulation
RCMRegulatory Compliance MarkRFRadio FrequencyRIRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	RACH	Random Access Channel
RFRadio FrequencyRIRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	RAT	Radio Access Technology
RIRing IndicatorRILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	RCM	Regulatory Compliance Mark
RILRadio Interface LayerRRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	RF	Radio Frequency
RRCRadio Resource ControlRTCReal Time ClockRTSRequest To SendRxReception	RI	Ring Indicator
RTCReal Time ClockRTSRequest To SendRxReception	RIL	Radio Interface Layer
RTSRequest To SendRxReception	RRC	Radio Resource Control
Rx Reception	RTC	Real Time Clock
	RTS	Request To Send
SCL Serial Clock	Rx	
	SCL	Serial Clock

Abbreviation	Definition
SDA	Serial Data
SDIO	Secure Digital Input Output
SIM	Subscriber Identity Module
SPI	Serial Peripheral Interface
SSL	Secure Socket Layer
TBS	Transport Block Size
ТСР	Transmission Control Protocol
TLS	Transport Layer Security
TS	Technical Specification
Тх	Transmission
TXD	Transmit Data
UART	Universal Asynchronous Receiver/Transmitter
uCPU	u-blox open CPU solution
UDP	User Datagram Protocol
UE	User Equipment
uFOTA	u-blox Firmware (update) Over-The-Air
UKCA	United Kingdom Conformity Assessed
UL	Uplink (Transmission)
USB	Universal Serial Bus
uSCM	u-blox Smart Connection Manager
VSWR	Voltage Standing Wave Ratio

Related documentation

- [1] u-blox SARA-R5 series / LEXI-R520 AT commands manual, UBX-19047455
- [2] u-blox LEXI-R520 system integration manual, UBX-23008006
- [3] u-blox package information user guide, UBX-14001652
- [4] 3GPP TS 27.007 AT command set for User Equipment (UE)
- [5] 3GPP TS 27.005 Use of Data Terminal Equipment Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- [6] 3GPP TS 27.010 Terminal Equipment to User Equipment (TE-UE) multiplexer protocol
- [7] 3GPP TS 36.521-1 Evolved Universal Terrestrial Radio Access; User Equipment conformance specification; Radio transmission and reception; Part 1: Conformance Testing
- [8] ITU-T Recommendation V24 List of definitions for interchange circuits between Data Terminal Equipment (DTE) and Data Connection Equipment (DCE)
- [9] Universal Serial Bus Revision 2.0 specification, https://www.usb.org/
- [10] I2C-bus specification and user manual UM10204 NXP semiconductors, https://www.nxp.com/docs/en/user-guide/UM10204.pdf
- [11] RFC 7252 Constrained Application Protocol (CoAP)

For regular updates to u-blox documentation and to receive product change notifications, register on our homepage (www.u-blox.com).

Revision history

Revision	Date	Name	Comments
R01	30-Jun-2023	fvid / sses	Initial release
R02	20-Oct-2023	fvid/sses	Updated LEXI-R520-02B product status to prototype.
			Added absolute maximum rating for VCC and VUSB_DET voltage ramp.
			Improvement on PWR_ON pin specifications.
			Corrected approvals description.
			Minor other clarifications and corrections.
R03 14	14-Mar-2024	fvid	Updated LEXI-R520-02B product status to engineering sample.
			Updated current consumption. Updated PWR_ON pin specifications.
			Updated approvals section.
			Minor other clarifications and corrections.

Contact

u-blox AG

T

Address: Zürcherstrasse 68 8800 Thalwil Switzerland

For further support and contact information, visit us at www.u-blox.com/support.