LARA-R2 series

Size-optimized LTE Cat 1 modules in single and multi-mode configurations
System integration manual

Abstract
This document describes the features and the system integration of LARA-R2 series multi-mode cellular modules. These modules are a complete, cost efficient and performance optimized LTE Cat 1/3G/2G multi-mode solution covering up to 4 LTE bands, up to 2 UMTS/HSPA bands and up to 2 GSM/EGPRS bands in the very small and compact LARA form factor.
Document information

<table>
<thead>
<tr>
<th>Title</th>
<th>LARA-R2 series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtitle</td>
<td>Size-optimized LTE Cat 1 modules in single and multi-mode configurations</td>
</tr>
<tr>
<td>Document type</td>
<td>System integration manual</td>
</tr>
<tr>
<td>Document number</td>
<td>UBX-16010573</td>
</tr>
<tr>
<td>Revision and date</td>
<td>R16 21-Nov-2019</td>
</tr>
</tbody>
</table>

Disclosure restriction

<table>
<thead>
<tr>
<th>Product status</th>
<th>Corresponding content status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional sample</td>
<td>Draft For functional testing. Revised and supplementary data will be published later.</td>
</tr>
<tr>
<td>In development / Prototype</td>
<td>Objective specification Target values. Revised and supplementary data will be published later.</td>
</tr>
<tr>
<td>Engineering sample</td>
<td>Advance information Data based on early testing. Revised and supplementary data will be published later.</td>
</tr>
<tr>
<td>Initial production</td>
<td>Early production information Data from product verification. Revised and supplementary data may be published later.</td>
</tr>
</tbody>
</table>
This document applies to the following products:

<table>
<thead>
<tr>
<th>Product name</th>
<th>Type number</th>
<th>Modem version</th>
<th>Application version</th>
<th>PCN reference</th>
<th>Product status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARA-R202</td>
<td>LARA-R202-02B-00</td>
<td>30.42</td>
<td>A01.00</td>
<td>UBX-17057959</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R202-02B-01</td>
<td>30.42</td>
<td>A01.01</td>
<td>UBX-18018067</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R202-02B-02</td>
<td>30.42</td>
<td>A01.02</td>
<td>UBX-18057549</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R202-02B-03</td>
<td>30.44</td>
<td>A01.02</td>
<td>UBX-19011731</td>
<td>Mass production</td>
</tr>
<tr>
<td></td>
<td>LARA-R202-82B-00</td>
<td>30.53</td>
<td>A01.03</td>
<td>UBX-19043497</td>
<td>Mass production</td>
</tr>
<tr>
<td>LARA-R203</td>
<td>LARA-R203-02B-00</td>
<td>30.39</td>
<td>A01.00</td>
<td>UBX-17048311</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R203-02B-01</td>
<td>30.39</td>
<td>A01.02</td>
<td>UBX-18018067</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R203-02B-02</td>
<td>30.39</td>
<td>A01.03</td>
<td>UBX-18057549</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R203-02B-03</td>
<td>30.41</td>
<td>A01.03</td>
<td>UBX-19011731</td>
<td>Mass production</td>
</tr>
<tr>
<td>LARA-R204</td>
<td>LARA-R204-02B-00</td>
<td>31.34</td>
<td>A01.00</td>
<td>UBX-17012269</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R204-02B-01</td>
<td>31.35</td>
<td>A01.03</td>
<td>UBX-18013471</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R204-02B-02</td>
<td>31.40</td>
<td>A01.00</td>
<td>UBX-18046834</td>
<td>Mass production</td>
</tr>
<tr>
<td>LARA-R211</td>
<td>LARA-R211-02B-00</td>
<td>30.31</td>
<td>A01.00</td>
<td>UBX-17012270</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R211-02B-01</td>
<td>30.49</td>
<td>A01.01</td>
<td>UBX-17054295</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R211-02B-02</td>
<td>30.49</td>
<td>A01.02</td>
<td>UBX-18057549</td>
<td>Mass production</td>
</tr>
<tr>
<td>LARA-R220</td>
<td>LARA-R220-62B-00</td>
<td>30.44</td>
<td>A01.03</td>
<td>UBX-17061668</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td>LARA-R220-62B-01</td>
<td>30.44</td>
<td>A01.04</td>
<td>UBX-18050698</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R220-62B-02</td>
<td>30.44</td>
<td>A01.05</td>
<td>UBX-18057549</td>
<td>Mass production</td>
</tr>
<tr>
<td></td>
<td>LARA-R220-62B-03</td>
<td>30.44</td>
<td>A01.06</td>
<td>UBX-19029271</td>
<td>In development</td>
</tr>
<tr>
<td>LARA-R280</td>
<td>LARA-R280-02B-00</td>
<td>30.43</td>
<td>A01.01</td>
<td>UBX-17063950</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td>LARA-R280-02B-01</td>
<td>30.43</td>
<td>A01.02</td>
<td>UBX-18018067</td>
<td>Obsolete</td>
</tr>
<tr>
<td></td>
<td>LARA-R280-02B-02</td>
<td>30.43</td>
<td>A01.03</td>
<td>UBX-18052020</td>
<td>End of life</td>
</tr>
<tr>
<td></td>
<td>LARA-R280-02B-03</td>
<td>30.43</td>
<td>A01.04</td>
<td>UBX-18057549</td>
<td>Mass production</td>
</tr>
<tr>
<td></td>
<td>LARA-R280-02B-04</td>
<td>30.43</td>
<td>A01.05</td>
<td>UBX-19029271</td>
<td>In development</td>
</tr>
</tbody>
</table>

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this document. Copying, reproduction, modification or disclosure to third parties of this document or any part thereof is only permitted with the express written permission of u-blox. The information contained herein is provided “as is” and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent documents, visit www.u-blox.com. Copyright © u-blox AG.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document information</td>
<td>2</td>
</tr>
<tr>
<td>Contents</td>
<td>4</td>
</tr>
<tr>
<td>1 System description</td>
<td>8</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Architecture</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Pin-out</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Operating modes</td>
<td>17</td>
</tr>
<tr>
<td>1.5 Supply interfaces</td>
<td>19</td>
</tr>
<tr>
<td>1.5.1 Module supply input (VCC)</td>
<td>19</td>
</tr>
<tr>
<td>1.5.2 RTC supply input/output (V_BCKP)</td>
<td>27</td>
</tr>
<tr>
<td>1.5.3 Generic digital interfaces supply output (V_INT)</td>
<td>28</td>
</tr>
<tr>
<td>1.6 System function interfaces</td>
<td>29</td>
</tr>
<tr>
<td>1.6.1 Module power-on</td>
<td>29</td>
</tr>
<tr>
<td>1.6.2 Module power-off</td>
<td>31</td>
</tr>
<tr>
<td>1.6.3 Module reset</td>
<td>34</td>
</tr>
<tr>
<td>1.6.4 Module / host configuration selection</td>
<td>34</td>
</tr>
<tr>
<td>1.7 Antenna interface</td>
<td>35</td>
</tr>
<tr>
<td>1.7.1 Antenna RF interfaces (ANT1 / ANT2)</td>
<td>35</td>
</tr>
<tr>
<td>1.7.2 Antenna detection interface (ANT_DET)</td>
<td>37</td>
</tr>
<tr>
<td>1.8 SIM interface</td>
<td>37</td>
</tr>
<tr>
<td>1.8.1 SIM card interface</td>
<td>37</td>
</tr>
<tr>
<td>1.8.2 SIM card detection interface (SIM_DET)</td>
<td>37</td>
</tr>
<tr>
<td>1.9 Data communication interfaces</td>
<td>38</td>
</tr>
<tr>
<td>1.9.1 UART interface</td>
<td>38</td>
</tr>
<tr>
<td>1.9.2 USB interface</td>
<td>50</td>
</tr>
<tr>
<td>1.9.3 HSIC interface</td>
<td>53</td>
</tr>
<tr>
<td>1.9.4 DDC (I2C) interface</td>
<td>53</td>
</tr>
<tr>
<td>1.9.5 SDIO interface</td>
<td>55</td>
</tr>
<tr>
<td>1.10 Audio interface</td>
<td>56</td>
</tr>
<tr>
<td>1.10.1 Digital audio interface</td>
<td>56</td>
</tr>
<tr>
<td>1.11 Clock output</td>
<td>57</td>
</tr>
<tr>
<td>1.12 General Purpose Input/Output (GPIO)</td>
<td>57</td>
</tr>
<tr>
<td>1.13 Reserved pins (RSVD)</td>
<td>57</td>
</tr>
<tr>
<td>1.14 System features</td>
<td>58</td>
</tr>
<tr>
<td>1.14.1 Network indication</td>
<td>58</td>
</tr>
<tr>
<td>1.14.2 Antenna detection</td>
<td>58</td>
</tr>
<tr>
<td>1.14.3 Jamming detection</td>
<td>58</td>
</tr>
<tr>
<td>1.14.4 Dual stack IPv4/IPv6</td>
<td>58</td>
</tr>
<tr>
<td>1.14.5 PPP</td>
<td>58</td>
</tr>
<tr>
<td>1.14.6 TCP/IP and UDP/IP</td>
<td>59</td>
</tr>
</tbody>
</table>
LARA-R2 series - System integration manual

2 Design-in ... 68
2.1 Overview ... 68
2.2 Supply interfaces ... 69
 2.2.1 Module supply (VCC) .. 69
 2.2.2 RTC supply (V_BCKP) ... 83
 2.2.3 Interface supply (V_INT) ... 84
2.3 System functions interfaces .. 85
 2.3.1 Module power-on (PWR_ON) .. 85
 2.3.2 Module reset (RESET_N) .. 86
 2.3.3 Module / host configuration selection ... 87
2.4 Antenna interface ... 88
 2.4.1 Antenna RF interface (ANT1 / ANT2) ... 88
 2.4.2 Antenna detection interface (ANT_DET) ... 95
2.5 SIM interface .. 97
2.6 Data communication interfaces ... 103
 2.6.1 UART interface ... 103
 2.6.2 USB interface .. 108
 2.6.3 HSIC interface ... 110
 2.6.4 DDC (I2C) interface .. 112
 2.6.5 SDIO interface ... 116
2.7 Audio interface .. 117
 2.7.1 Digital audio interface ... 117
2.8 General Purpose Input/Output (GPIO) ... 121
2.9 Reserved pins (RSVD) ... 122
2.10 Module placement ... 122
2.11 Module footprint and paste mask ... 123
2.12 Thermal guidelines .. 124
2.13 ESD guidelines ... 125
 2.13.1 ESD immunity test overview ... 125
 2.13.2 ESD immunity test of u-blox LARA-R2 series reference designs 125
 2.13.3 ESD application circuits .. 126
2.14 Schematic for LARA-R2 series module integration ... 129
3 Handling and soldering ... 132
 3.1 Packaging, shipping, storage and moisture preconditioning 132
 3.2 Handling ... 132
 3.3 Soldering ... 133
 3.3.1 Soldering paste .. 133
 3.3.2 Reflow soldering .. 133
 3.3.3 Optical inspection ... 134
 3.3.4 Cleaning ... 134
 3.3.5 Repeated reflow soldering .. 135
 3.3.6 Wave soldering ... 135
 3.3.7 Hand soldering .. 135
 3.3.8 Rework ... 135
 3.3.9 Conformal coating ... 135
 3.3.10 Casting .. 135
 3.3.11 Grounding metal covers .. 136
 3.3.12 Use of ultrasonic processes .. 136
 4 Approvals ... 137
 4.1 Product certification approval overview .. 137
 4.2 US Federal Communications Commission notice ... 138
 4.2.1 Safety warnings review the structure ... 138
 4.2.2 Declaration of conformity ... 138
 4.2.3 Modifications .. 139
 4.3 Innovation, Science, Economic Development Canada notice 140
 4.3.1 Declaration of Conformity .. 140
 4.3.2 Modifications .. 140
 4.4 European Conformance CE mark ... 143
 5 Product testing .. 144
 5.1 u-blox in-series production test .. 144
 5.2 Test parameters for OEM manufacturers .. 145
 5.2.1 “Go/No go” tests for integrated devices ... 145
 5.2.2 Functional tests providing RF operation .. 145
 Appendix .. 147
 A Migration between SARA-U2 and LARA-R2 .. 147
 A.1 Overview ... 147
 A.2 Pin-out comparison between SARA-U2 and LARA-R2 151
 A.3 Schematic for SARA-U2 and LARA-R2 integration .. 154
 B Glossary ... 155
 Related documents .. 158
1 System description

1.1 Overview

The LARA-R2 series comprises LTE Cat 1 / 3G / 2G multi-mode modules supporting up to four LTE bands, up to two 3G UMTS/HSPA bands and up to two 2G GSM/(E)GPRS bands for voice and/or data transmission in the very small LARA LGA form-factor (26.0 x 24.0 mm, 100-pin), easy to integrate in compact designs:

- LARA-R202 is designed mainly for operation in America (on LTE and 3G networks)
- LARA-R203 is designed mainly for operation in America (on LTE network)
- LARA-R204 is designed mainly for operation in North America (on the Verizon network)
- LARA-R211 is designed mainly for operation in Europe, Asia and other countries (on LTE and 2G networks)
- LARA-R220 is designed mainly for operation in Japan (on the NTT DoCoMo LTE network)
- LARA-R280 is designed mainly for operation in Asia, Oceania and other countries (on LTE and 3G networks)

LARA-R2 series modules are form-factor compatible with the u-blox SARA, LISA and TOBY cellular module families: this facilitates easy migration from u-blox GSM/GPRS, CDMA, UMTS/HSPA, and LTE high data rate modules, maximizes the investments of customers, simplifies logistics, and enables very short time-to-market. The modules are ideal for applications that are transitioning to LTE from 2G and 3G, due to the long term availability and scalability of LTE networks.

With a range of interface options and an integrated IP stack, the modules are designed to support a wide range of data-centric applications. The unique combination of performance and flexibility make these modules ideally suited for medium speed M2M applications, such as smart energy gateways, remote access video cameras, digital signage, telehealth and telematics.

LARA-R2 series modules include product versions supporting Voice over LTE (VoLTE) and voice over 3G or 2G (CSFB) for applications that require voice, such as security and surveillance systems.
Table 1 summarizes the main features and interfaces of the LARA-R2 series modules.

<table>
<thead>
<tr>
<th>Model</th>
<th>Region</th>
<th>Radio Access Technology</th>
<th>Positioning</th>
<th>Interfaces</th>
<th>Audio</th>
<th>Features</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>LARA-R202</td>
<td>North America</td>
<td>LTE bands(^1)</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
</tr>
<tr>
<td>LARA-R203</td>
<td>North America</td>
<td>LTE bands(^1)</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
</tr>
<tr>
<td>LARA-R204</td>
<td>North America</td>
<td>LTE bands(^1)</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
</tr>
<tr>
<td>LARA-R211</td>
<td>Europe</td>
<td>LTE bands(^1)</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
</tr>
<tr>
<td>LARA-R220</td>
<td>Japan</td>
<td>LTE bands(^1)</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
</tr>
<tr>
<td>LARA-R280</td>
<td>APAC</td>
<td>LTE bands(^1)</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
<td>• • • 1 1 1 1 1 9</td>
</tr>
</tbody>
</table>

\(^{1}\) LTE band 12 is a superset including band 17: LTE band 12 is supported along with Multi-Frequency Band Indicator feature

\(^{2}\) AT&T certified

\(^{3}\) Not supported by LARA-R211-02B-00

UBX-16010573 - R16 System description Page 9 of 160
Table 2 summarizes cellular radio access technology characteristics of LARA-R2 series modules.

<table>
<thead>
<tr>
<th>4G LTE</th>
<th>3G UMTS/HSDPA/HSUPA</th>
<th>2G GSM/GPRS/EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP Release 9</td>
<td>3GPP Release 9</td>
<td>3GPP Release 9</td>
</tr>
<tr>
<td>Long Term Evolution (LTE)</td>
<td>High Speed Packet Access (HSPA)</td>
<td>Enhanced Data rate GSM Evolution (EDGE)</td>
</tr>
<tr>
<td>Evolved UTRA (E-UTRA)</td>
<td>UMTS Terrestrial Radio Access (UTRA)</td>
<td>GSM EGPRS Radio Access (GERA)</td>
</tr>
<tr>
<td>Frequency Division Duplex (FDD)</td>
<td>Frequency Division Duplex (FDD)</td>
<td>Time Division Multiple Access (TDMA)</td>
</tr>
<tr>
<td>DL Rx diversity</td>
<td>DL Rx Diversity</td>
<td>DL Advanced Rx Performance Phase 1</td>
</tr>
</tbody>
</table>

Band support:

- **LARA-R202:**
 - Band 12 (700 MHz)
 - Band 5 (850 MHz)
 - Band 4 (1700 MHz)
 - Band 2 (1900 MHz)

- **LARA-R203:**
 - Band 12 (700 MHz)
 - Band 4 (1700 MHz)
 - Band 2 (1900 MHz)

- **LARA-R204:**
 - Band 13 (700 MHz)
 - Band 4 (1700 MHz)

- **LARA-R211:**
 - Band 20 (800 MHz)
 - Band 3 (1800 MHz)
 - Band 7 (2600 MHz)

- **LARA-R220:**
 - Band 19 (850 MHz)
 - Band 1 (2100 MHz)

- **LARA-R280:**
 - Band 28 (700 MHz)
 - Band 8 (900 MHz)
 - Band 3 (1800 MHz)

- **LARA-R280:**
 - Band 1 (2100 MHz)

LTE Power Class
- Power Class 3 (23 dBm)

UMTS/HSDPA/HSUPA Power Class
- Class 3 (24 dBm)

GSM/GPRS (GMSK) Power Class
- Power Class 4 (33 dBm) for E-GSM band
- Power Class 1 (30 dBm) for DCS band

EDGE Power Class
- Power Class E2 (27 dBm) for E-GSM band
- Power Class E2 (26 dBm) for DCS band

Data Rate
- **LTE category 1:**
 - up to 10.3 Mb/s DL, 5.2 Mb/s UL

- **HSUPA category 8:**
 - up to 7.2 Mb/s DL

- **HSUPA category 6:**
 - up to 5.76 Mb/s UL

- **HSUPA category 6:**
 - up to 6.24 Mb/s UL

- **GPRS multi-slot class 33:**
 - CS1-CS4, up to 107 kb/s DL, up to 85.6 kb/s UL

- **EDGE multi-slot class 33:**
 - MCS1-MCS9, up to 296 kb/s DL, up to 236.8 kb/s UL

Table 2: LARA-R2 series LTE, 3G and 2G characteristics

4 LARA-R2 series modules support all the E-UTRA channel bandwidths for each operating band as per 3GPP TS 36.521-1 [13].
5 LTE band 12 is a superset including the band 17: LTE band 12 is supported along with Multi-Frequency Band Indicator feature.
6 GPRS/EDGE multislot class determines the number of timeslots available for upload and download and thus the speed at which data can be transmitted and received, with higher classes typically allowing faster data transfer rates.
7 GPRS/EDGE multislot class 33 implies a maximum of 5 slots in DL (reception), 4 slots in UL (transmission) with 6 slots in total.
1.2 Architecture

Figure 1 summarizes the internal architecture of the LARA-R2 series modules.

LARA-R2 series modules internally consist of the RF, Baseband and Power Management sections described herein with more details than the simplified block diagrams of Figure 1.

RF section

The RF section is composed of an RF transceiver, PAs, LNAs, crystal oscillator, filters, duplexers and RF switches.

The Tx signal is pre-amplified by the RF transceiver, then output to the primary antenna input/output port (ANT1) of the module via power amplifier (PA), SAW band pass filters band, specific duplexer and antenna switch.

Dual receiving paths are implemented according to LTE Receiver Diversity radio technology supported by the modules as LTE category 1 User Equipment: the incoming signal is received through the primary (ANT1) and the secondary (ANT2) antenna input ports, which are connected to the RF transceiver via specific antenna switch, diplexer, duplexer, LNA, SAW band pass filters.

- RF transceiver performs modulation, up-conversion of the baseband I/Q signals for Tx, down-conversion and demodulation of the dual RF signals for Rx. The RF transceiver contains:
 - Single chain high linearity receivers with integrated LNAs for multi-band multi-mode operation,
 - Highly linear RF demodulator / modulator capable GMSK, 8-PSK, QPSK, 16-QAM,
 - RF synthesizer,
 - VCO.
- Power Amplifiers (PA) amplify the Tx signal modulated by the RF transceiver
- RF switches connect primary (ANT1) and secondary (ANT2) antenna ports to the suitable Tx / Rx path
- SAW duplexers and band pass filters separate the Tx and Rx signal paths and provide RF filtering
- 26 MHz voltage-controlled temperature-controlled crystal oscillator generates the clock reference in active mode or connected mode.
Baseband and power management section

The Baseband and Power Management section is composed of the following main elements:

- A mixed signal ASIC, which integrates
 - Microprocessor for control functions
 - DSP core for cellular Layer 1 and digital processing of Rx and Tx signal paths
 - Memory interface controller
 - Dedicated peripheral blocks for control of the USB, SIM and generic digital interfaces
 - Interfaces to RF transceiver ASIC
- Memory system, which includes NAND flash and LPDDR2 RAM
- Voltage regulators to derive all the subsystem supply voltages from the module supply input VCC
- Voltage sources for external use: V_BCKP and V_INT
- Hardware power on
- Hardware reset
- Low power idle mode support
- 32.768 kHz crystal oscillator to provide the clock reference in the low power idle mode, which can be set by enable power saving configuration using the AT+UPSV command.

1.3 Pin-out

Table 3 lists the pin-out of the LARA-R2 series modules, with pins grouped by function.

<table>
<thead>
<tr>
<th>Function</th>
<th>Pin name</th>
<th>Pin no.</th>
<th>I/O</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>VCC</td>
<td>51, 52, 53</td>
<td>I</td>
<td>Module supply input</td>
<td>VCC supply circuit affects the RF performance and compliance of the device integrating the module with applicable required certification schemes. See section 1.5.1 for description and requirements. See section 2.2.1 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>GND</td>
<td>1, 3, 14, 20, 22, 30, 32, 43, 50, 54, 55, 57, 58, 60, 61, 63-96</td>
<td>N/A</td>
<td>Ground</td>
<td>GND pins are internally connected each other. External ground connection affects the RF and thermal performance of the device. See section 1.5.1 for functional description. See section 2.2.1 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>V_BCKP</td>
<td>2</td>
<td>I/O</td>
<td>RTC supply input/output</td>
<td>V_BCKP = 1.8 V (typical) generated by internal regulator when valid VCC supply is present. See section 1.5.2 for functional description. See section 2.2.2 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>V_INT</td>
<td>4</td>
<td>O</td>
<td>Generic Digital Interfaces supply output</td>
<td>V_INT = 1.8 V (typical), generated by internal DC/DC regulator when the module is switched on. Test-Point for diagnostic access is recommended. See section 1.5.3 for functional description. See section 2.2.3 for external circuit design-in.</td>
</tr>
<tr>
<td>System</td>
<td>PWR_ON</td>
<td>15</td>
<td>I</td>
<td>Power-on input</td>
<td>Internal 10 kΩ pull-up resistor to V_BCKP. See section 1.6.1 for functional description. See section 2.3.1 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>RESET_N</td>
<td>18</td>
<td>I</td>
<td>External reset input</td>
<td>Internal 10 kΩ pull-up resistor to V_BCKP. Test-Point for diagnostic access is recommended. See section 1.6.3 for functional description. See section 2.3.2 for external circuit design-in.</td>
</tr>
<tr>
<td>Function</td>
<td>Pin name</td>
<td>Pin no.</td>
<td>I/O</td>
<td>Description</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HOST_SELECT</td>
<td>21</td>
<td>I/O</td>
<td></td>
<td>Selection of module / host configuration</td>
<td>Not supported by "02", "62" and "82" product versions. Pin available to select, enable, connect, disconnect and subsequently re-connect the HSIC interface. See section 1.6.4 for functional description. See section 2.3.3 for external circuit design-in.</td>
</tr>
<tr>
<td>Antenna</td>
<td>ANT1</td>
<td>56</td>
<td>I/O</td>
<td>Primary antenna</td>
<td>Main Tx / Rx antenna interface. 50 Ω nominal characteristic impedance. Antenna circuit affects the RF performance and compliance of the device integrating the module with applicable required certification schemes. See section 1.7 for description and requirements. See section 2.4 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>ANT2</td>
<td>62</td>
<td>I</td>
<td>Secondary antenna</td>
<td>Rx only for Rx diversity. 50 Ω nominal characteristic impedance. Antenna circuit affects the RF performance and compliance of the device integrating the module with applicable required certification schemes. See section 1.7 for description and requirements. See section 2.4 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>ANT_DET</td>
<td>59</td>
<td>I</td>
<td>Input for antenna detection</td>
<td>ADC for antenna presence detection function. See section 1.7.2 for functional description. See section 2.4.2 for external circuit design-in.</td>
</tr>
<tr>
<td>SIM</td>
<td>VSIM</td>
<td>41</td>
<td>O</td>
<td>SIM supply output</td>
<td>VSIM = 1.8 V / 3 V output as per the connected SIM type. See section 1.8 for functional description. See section 2.5 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>SIM_IO</td>
<td>39</td>
<td>I/O</td>
<td>SIM data</td>
<td>Data input/output for 1.8 V / 3 V SIM Internal 4.7 kΩ pull-up to VSIM. See section 1.8 for functional description. See section 2.5 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>SIM_CLK</td>
<td>38</td>
<td>O</td>
<td>SIM clock</td>
<td>3.25 MHz clock output for 1.8 V / 3 V SIM See section 1.8 for functional description. See section 2.5 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>SIM_RST</td>
<td>40</td>
<td>O</td>
<td>SIM reset</td>
<td>Reset output for 1.8 V / 3 V SIM See section 1.8 for functional description. See section 2.5 for external circuit design-in.</td>
</tr>
<tr>
<td>UART</td>
<td>RXD</td>
<td>13</td>
<td>O</td>
<td>UART data output</td>
<td>1.8 V output, Circuit 104 (RXD) in ITU-T V.24, for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool and diagnostic. Test-Point and series 0 Ω for diagnostic recommended. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>TXD</td>
<td>12</td>
<td>I</td>
<td>UART data input</td>
<td>1.8 V input, Circuit 103 (TXD) in ITU-T V.24, for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool and diagnostic. Internal active pull-up to V_INT. Test-Point and series 0 Ω for diagnostic recommended. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>CTS</td>
<td>11</td>
<td>O</td>
<td>UART clear to send output</td>
<td>1.8 V output, Circuit 106 (CTS) in ITU-T V.24. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>RTS</td>
<td>10</td>
<td>I</td>
<td>UART ready to send input</td>
<td>1.8 V input, Circuit 105 (RTS) in ITU-T V.24. Internal active pull-up to V_INT. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in.</td>
</tr>
<tr>
<td>Function</td>
<td>Pin name</td>
<td>Pin no.</td>
<td>I/O</td>
<td>Description</td>
<td>Remarks</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>O</td>
<td></td>
<td>UART data set ready output</td>
<td>1.8 V output, Circuit 107 (DSR) in ITU-T V.24. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in.</td>
</tr>
<tr>
<td>RI</td>
<td>7</td>
<td>O</td>
<td></td>
<td>UART ring indicator output</td>
<td>1.8 V output, Circuit 125 (RI) in ITU-T V.24. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in.</td>
</tr>
<tr>
<td>DTR</td>
<td>9</td>
<td>I</td>
<td></td>
<td>UART data terminal ready input</td>
<td>1.8 V input, Circuit 108/2 (DTR) in ITU-T V.24. Internal active pull-up to V_INT. Test-Point and series 0 Ω for diagnostic recommended. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in.</td>
</tr>
<tr>
<td>DCD</td>
<td>8</td>
<td>O</td>
<td></td>
<td>UART data carrier detect output</td>
<td>1.8 V input, Circuit 109 (DCD) in ITU-T V.24. Test-Point and series 0 Ω for diagnostic recommended. See section 1.9.1 for functional description. See section 2.6.1 for external circuit design-in.</td>
</tr>
<tr>
<td>USB</td>
<td>VUSB_DET</td>
<td>17</td>
<td>I</td>
<td>USB detect input</td>
<td>VBUS (5 V typical) must be connected to this input pin to enable the USB interface. If the USB interface is not used by the Application Processor, Test-Point for diagnostic / FW update access recommended. See section 1.9.2 for functional description. See section 2.6.2 for external circuit design-in.</td>
</tr>
<tr>
<td>USB_D-</td>
<td>28</td>
<td>I/O</td>
<td></td>
<td>USB Data Line D-</td>
<td>USB interface for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool, diagnostic 90 Ω nominal differential impedance (Z0) 30 Ω nominal common mode impedance (ZCM) Pull-up or pull-down resistors and external series resistors as required by the USB 2.0 specifications [9] are part of the USB pin driver and need not be provided externally. If the USB interface is not used by the Host Processor, Test-Point for diagnostic / FW update is recommended. See section 1.9.2 for functional description. See section 2.6.2 for external circuit design-in.</td>
</tr>
<tr>
<td>USB_D+</td>
<td>29</td>
<td>I/O</td>
<td></td>
<td>USB Data Line D+</td>
<td>USB interface for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool and diagnostic. 90 Ω nominal differential impedance (Z0) 30 Ω nominal common mode impedance (ZCM) Pull-up or pull-down resistors and external series resistors as required by the USB 2.0 specifications [9] are part of the USB pin driver and need not be provided externally. If the USB interface is not used by the Host Processor, Test-Point for diagnostic / FW update is recommended. See section 1.9.2 for functional description. See section 2.6.2 for external circuit design-in.</td>
</tr>
<tr>
<td>HSIC</td>
<td>HSIC_DATA</td>
<td>99</td>
<td>I/O</td>
<td>HSIC USB data line</td>
<td>Not supported by “02”, “62” and “82” product versions. USB High-Speed Inter-Chip compliant interface for AT commands, data communication, FOAT, FW update by u-blox EasyFlash tool and diagnostic. 50 Ω nominal characteristic impedance. Test-Point for diagnostic / FW update is recommended. See section 1.9.3 for functional description. See section 2.6.3 for external circuit design-in.</td>
</tr>
<tr>
<td>Function</td>
<td>Pin name</td>
<td>Pin no.</td>
<td>I/O</td>
<td>Description</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>HSIC_STRB</td>
<td>100</td>
<td>I/O</td>
<td></td>
<td>HSIC USB strobe line</td>
<td>Not supported by "02", "62" and "82" product versions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HSIC interface for AT commands, data communication, FOAT, FW update</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>by u-blox EasyFlash tool and diagnostic. 50 Ω nominal characteristic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>impedance. Test-Point for diagnostic / FW update is recommended.</td>
</tr>
<tr>
<td>DDC</td>
<td>SCL</td>
<td>27</td>
<td>O</td>
<td>I2C bus clock line</td>
<td>1.8 V open drain, for communication with I2C-slave devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External pull-up required. See section 1.9.3 for functional description.</td>
</tr>
<tr>
<td></td>
<td>SDA</td>
<td>26</td>
<td>I/O</td>
<td>I2C bus data line</td>
<td>1.8 V open drain, for communication with I2C-slave devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External pull-up required. See section 1.9.4 for functional description.</td>
</tr>
<tr>
<td>SDIO</td>
<td>SDIO_D0</td>
<td>47</td>
<td>I/O</td>
<td>SDIO serial data [0]</td>
<td>Not supported by "02", "62" and "82" product versions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDIO for communication with u-blox Wi-Fi module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See section 1.9.5 for functional description.</td>
</tr>
<tr>
<td></td>
<td>SDIO_D1</td>
<td>49</td>
<td>I/O</td>
<td>SDIO serial data [1]</td>
<td>Not supported by "02", "62" and "82" product versions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDIO for communication with u-blox Wi-Fi module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See section 1.9.5 for functional description.</td>
</tr>
<tr>
<td></td>
<td>SDIO_D2</td>
<td>44</td>
<td>I/O</td>
<td>SDIO serial data [2]</td>
<td>Not supported by "02", "62" and "82" product versions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDIO for communication with u-blox Wi-Fi module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See section 1.9.5 for functional description.</td>
</tr>
<tr>
<td></td>
<td>SDIO_D3</td>
<td>48</td>
<td>I/O</td>
<td>SDIO serial data [3]</td>
<td>Not supported by "02", "62" and "82" product versions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDIO for communication with u-blox Wi-Fi module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See section 1.9.5 for functional description.</td>
</tr>
<tr>
<td>SDIO_CLK</td>
<td>45</td>
<td>O</td>
<td></td>
<td>SDIO serial clock</td>
<td>Not supported by "02", "62" and "82" product versions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDIO for communication with u-blox Wi-Fi module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See section 1.9.5 for functional description.</td>
</tr>
<tr>
<td>SDIO_CMD</td>
<td>46</td>
<td>I/O</td>
<td></td>
<td>SDIO command</td>
<td>Not supported by "02", "62" and "82" product versions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDIO for communication with u-blox Wi-Fi module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See section 1.9.5 for functional description.</td>
</tr>
<tr>
<td>Audio</td>
<td>I2S_TXD</td>
<td>35</td>
<td>O/I</td>
<td>I2S transmit data / GPIO</td>
<td>I2S transmit data out, alternatively configurable as GPIO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not supported by LARA-R204-02B / LARA-R220-62B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See sections 1.10 and 1.12 for functional description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See sections 2.7 and 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>I2S_RXD</td>
<td>37</td>
<td>I/I</td>
<td>I2S receive data / GPIO</td>
<td>I2S receive data input, alternatively configurable as GPIO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not supported by LARA-R204-02B / LARA-R220-62B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See sections 1.10 and 1.12 for functional description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See sections 2.7 and 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>I2S_CLK</td>
<td>36</td>
<td>I/O</td>
<td>I2S clock / GPIO</td>
<td>I2S serial clock, alternatively configurable as GPIO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not supported by LARA-R204-02B / LARA-R220-62B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See sections 1.10 and 1.12 for functional description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See sections 2.7 and 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>I2S_WA</td>
<td>34</td>
<td>I/O</td>
<td>I2S word alignment / GPIO</td>
<td>I2S word alignment, alternatively configurable as GPIO.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not supported by LARA-R204-02B / LARA-R220-62B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See sections 1.10 and 1.12 for functional description.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>See sections 2.7 and 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td>Function</td>
<td>Pin name</td>
<td>Pin no.</td>
<td>I/O</td>
<td>Description</td>
<td>Remarks</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------</td>
<td>-----</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Clock output</td>
<td>GPIO6</td>
<td>19</td>
<td>O</td>
<td>Clock output</td>
<td>1.8 V configurable clock output. See section 1.11 for functional description. See section 2.7 for external circuit design-in.</td>
</tr>
<tr>
<td>GPIO</td>
<td>GPIO1</td>
<td>16</td>
<td>I/O</td>
<td>GPIO</td>
<td>1.8 V GPIO with alternatively configurable functions. See section 1.12 for functional description. See section 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>GPIO2</td>
<td>23</td>
<td>I/O</td>
<td>GPIO</td>
<td>1.8 V GPIO with alternatively configurable functions. See section 1.12 for functional description. See section 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>GPIO3</td>
<td>24</td>
<td>I/O</td>
<td>GPIO</td>
<td>1.8 V GPIO with alternatively configurable functions. See section 1.12 for functional description. See section 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>GPIO4</td>
<td>25</td>
<td>I/O</td>
<td>GPIO</td>
<td>1.8 V GPIO with alternatively configurable functions. See section 1.12 for functional description. See section 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td></td>
<td>GPIO5</td>
<td>42</td>
<td>I/O</td>
<td>GPIO</td>
<td>1.8 V GPIO with alternatively configurable functions. See section 1.12 for functional description. See section 2.8 for external circuit design-in.</td>
</tr>
<tr>
<td>Reserved</td>
<td>RSVD</td>
<td>33</td>
<td>N/A</td>
<td>RESERVED pin</td>
<td>This pin must be connected to ground. See sections 1.13 and 2.9</td>
</tr>
<tr>
<td></td>
<td>RSVD</td>
<td>31, 97, 98</td>
<td>N/A</td>
<td>RESERVED pin</td>
<td>Internally not connected. Leave unconnected. See sections 1.13 and 2.9</td>
</tr>
</tbody>
</table>

Table 3: LARA-R2 series modules pin definition, grouped by function
1.4 Operating modes

LARA-R2 series modules have several operating modes. The operating modes defined in Table 4 and described in detail in Table 5 provide general guidelines for operation.

<table>
<thead>
<tr>
<th>General status</th>
<th>Operating mode</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-down</td>
<td>Not-powered Mode</td>
<td>VCC supply not present or below operating range: module is switched off.</td>
</tr>
<tr>
<td></td>
<td>Power-off Mode</td>
<td>VCC supply within operating range and module is switched off.</td>
</tr>
<tr>
<td>Normal operation Idle mode</td>
<td>Active mode</td>
<td>Module processor core runs with 26 MHz reference generated by the internal oscillator.</td>
</tr>
<tr>
<td></td>
<td>Connected mode</td>
<td>RF Tx/Rx data connection enabled and processor core runs with 26 MHz reference.</td>
</tr>
</tbody>
</table>

Table 4: Module operating modes definition

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not-powered</td>
<td>Module is switched off.</td>
</tr>
<tr>
<td></td>
<td>Application interfaces are not accessible.</td>
</tr>
<tr>
<td></td>
<td>When VCC supply is removed, the module enters not-powered mode.</td>
</tr>
<tr>
<td></td>
<td>When in not-powered mode, the modules cannot be switched on by PWR_ON, RESET_N or RTC alarm.</td>
</tr>
<tr>
<td></td>
<td>When in not-powered mode, the modules can be switched on applying VCC supply (see 1.6.1) so that the module switches from not-powered to active mode.</td>
</tr>
<tr>
<td>Power-off</td>
<td>Module is switched off: normal shutdown by an appropriate power-off event (see 1.6.2). Application interfaces are not accessible.</td>
</tr>
<tr>
<td></td>
<td>When the module is switched off by an appropriate switch-off event (see 1.6.2), the module enters power-off mode from active mode.</td>
</tr>
<tr>
<td></td>
<td>When in power-off mode, the modules can be switched on by PWR_ON, RESET_N or RTC alarm (see 1.6.1); the module switches from power-off to active mode.</td>
</tr>
<tr>
<td></td>
<td>When in power-off mode, the modules enter not-powered mode by removing the VCC supply.</td>
</tr>
<tr>
<td>Idle</td>
<td>Module is switched on with application interfaces temporarily disabled or suspended: the module is temporarily not ready to communicate with an external device by means of the application interfaces as configured to reduce the current consumption.</td>
</tr>
<tr>
<td></td>
<td>The module enters the low power idle mode whenever possible if power saving is enabled by AT+UPSV (see u-blox AT commands manual [2]) reducing power consumption (see 1.5.1.5).</td>
</tr>
<tr>
<td></td>
<td>The CTS output line indicates when the UART interface is disabled/enabled due to the module idle/active mode according to power saving and HW flow control settings (see 1.9.1.3, 1.9.1.4).</td>
</tr>
<tr>
<td></td>
<td>Power saving configuration is not enabled by default: it can be enabled by AT+UPSV (see the u-blox AT commands manual [2]).</td>
</tr>
<tr>
<td></td>
<td>The module automatically switches from active mode to idle mode whenever possible if power saving is enabled (see sections 1.5.1.5, 1.9.1.4, 1.9.2.4 and to the u-blox AT commands manual [2], AT+UPSV command).</td>
</tr>
<tr>
<td></td>
<td>The module wakes up from idle to active mode in the following events:</td>
</tr>
<tr>
<td></td>
<td>• Automatic periodic monitoring of the paging channel for the paging block reception according to network conditions (see 1.5.1.4, 1.9.1.4)</td>
</tr>
<tr>
<td></td>
<td>• Automatic periodic enable of the UART interface to receive and send data, if AT+UPSV=1 power saving is set (see 1.9.1.4)</td>
</tr>
<tr>
<td></td>
<td>• Data received on UART interface, according to HW flow control (AT&k) and power saving (AT+UPSV) settings (see 1.9.1.4)</td>
</tr>
<tr>
<td></td>
<td>• RTS input set ON by the host DTE, with HW flow control disabled and AT+UPSV=2 (see 1.9.1.4)</td>
</tr>
<tr>
<td></td>
<td>• DTR input set ON by the host DTE, with AT+UPSV=3 (see 1.9.1.4)</td>
</tr>
<tr>
<td></td>
<td>• USB detection, applying 5 V (typ.) to VUSB_DET input (see 1.9.2)</td>
</tr>
<tr>
<td></td>
<td>• The connected USB host forces a remote wakeup of the module as USB device (see 1.9.2.4)</td>
</tr>
<tr>
<td></td>
<td>• The connected u-blox GNSS receiver forces a wakeup of the cellular module using the GNSS Tx data ready function over the GPIO3 pin (see 1.9.4)</td>
</tr>
<tr>
<td></td>
<td>• The connected SDIO device forces a wakeup of the module as SDIO host (see 1.9.5)</td>
</tr>
<tr>
<td></td>
<td>• RTC alarm occurs (see u-blox AT commands manual [2], +CALA)</td>
</tr>
<tr>
<td>Active</td>
<td>The module is ready to communicate with an external device by means of the application interfaces unless power saving configuration is enabled by the module.</td>
</tr>
<tr>
<td></td>
<td>When the module is switched on by an appropriate power-on event (see 2.3.1), the module enters active mode from not-powered or power-off mode.</td>
</tr>
</tbody>
</table>
If power saving configuration is enabled by the AT+UPSV command, the module automatically switches from active to idle mode whenever possible and the module wakes up from idle to active mode in the events listed above (see idle to active transition description). When a voice call or a data call is initiated, the module switches from active mode to connected mode.

When a voice call or a data call is initiated, the module enters connected mode from active mode. Connected mode is suspended if Tx/Rx data is not in progress, due to connected discontinuous reception and fast dormancy capabilities of the module and according to network environment settings and scenario. In such case, the module automatically switches from connected to active mode and then, if power saving configuration is enabled by the AT+UPSV command, the module automatically switches to idle mode whenever possible. Vice-versa, the module wakes up from idle to active mode and then connected mode if RF Tx/Rx is necessary. When a data connection is terminated, the module returns to the active mode.

Table 5: Module operating modes descriptions

Table 5: Module operating modes descriptions

Figure 2 describes the transition between the different operating modes.
1.5 Supply interfaces

1.5.1 Module supply input (VCC)

The modules must be supplied via the three VCC pins that represent the module power supply input. The VCC pins are internally connected to the RF power amplifier and to the integrated Power Management Unit: all supply voltages needed by the module are generated from the VCC supply by integrated voltage regulators, including the V_BCKP Real Time Clock supply, V_INT digital interfaces supply and VSIM SIM card supply.

During operation, the current drawn by the LARA-R2 series modules through the VCC pins can vary by several orders of magnitude. This ranges from the pulse of current consumption during GSM transmitting bursts at maximum power level in connected mode (as described in section 1.5.1.2) to the low current consumption during low power idle mode with power saving enabled (as described in section 1.5.1.5).

LARA-R211 modules provide separate supply inputs over the three VCC pins:

- **VCC** pins #52 and #53 represent the supply input for the internal RF power amplifier, demanding most of the total current drawn of the module when RF transmission is enabled during a voice/data call
- **VCC** pin #51 represents the supply input for the internal baseband Power Management Unit and the internal transceiver, demanding minor part of the total current drawn of the module when RF transmission is enabled during a voice/data call

Figure 3 provides a simplified block diagram of LARA-R2 series modules internal VCC supply routing.

![Figure 3: LARA-R2 series modules internal VCC supply routing simplified block diagram](image-url)
1.5.1.1 VCC supply requirements

Table 6 summarizes the requirements for the VCC module supply. See section 2.2.1 for all the suggestions to properly design a VCC supply circuit compliant to the requirements listed in Table 6.

⚠ VCC supply circuit affects the RF compliance of the device integrating LARA-R2 series modules with applicable required certification schemes as well as antenna circuit design. Compliance is met by fulfilling the requirements for the VCC supply summarized in Table 6.

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC nominal voltage</td>
<td>Within VCC normal operating range: 3.30 V min. / 4.40 V max.</td>
<td>RF performance is guaranteed when VCC PA voltage is inside the normal operating range limits. RF performance may be affected when VCC PA voltage is outside the normal operating range limits, though the module is still fully functional until the VCC voltage is inside the extended operating range limits.</td>
</tr>
<tr>
<td>VCC voltage during normal operation</td>
<td>Within VCC extended operating range: 3.00 V min. / 4.50 V max.</td>
<td>VCC voltage must be above the extended operating range minimum limit to switch-on the module. The module may switch-off when the VCC voltage drops below the extended operating range minimum limit. Operation above VCC extended operating range is not recommended and may affect device reliability.</td>
</tr>
<tr>
<td>VCC average current</td>
<td>Support with adequate margin the highest averaged VCC current consumption value in connected mode conditions specified in LARA-R2 series data sheet [1]</td>
<td>The highest averaged VCC current consumption can be greater than the specified value according to the actual antenna mismatching, temperature and VCC voltage. See 1.5.1.2, 1.5.1.4 for connected mode current profiles.</td>
</tr>
<tr>
<td>VCC peak current</td>
<td>Support with margin the highest peak VCC current consumption value in connected mode conditions specified in LARA-R2 series data sheet [1]</td>
<td>The specified highest peak of VCC current consumption occurs during GSM single transmit slot in 850/900 MHz connected mode, in case of a mismatched antenna. See 1.5.1.2 for 2G connected mode current profiles.</td>
</tr>
<tr>
<td>VCC voltage drop during 2G Tx slots</td>
<td>Lower than 400 mV</td>
<td>VCC voltage drop directly affects the RF compliance with applicable certification schemes. Figure 5 describes VCC voltage drop during Tx slots.</td>
</tr>
<tr>
<td>VCC voltage ripple during 2G/3G/LTE Tx</td>
<td>Noise in the supply must be minimized</td>
<td>VCC voltage ripple directly affects the RF compliance with applicable certification schemes. Figure 5 describes VCC voltage ripple during Tx slots.</td>
</tr>
<tr>
<td>VCC under/over-shoot at start/end of Tx slots</td>
<td>Absent or at least minimized</td>
<td>VCC under/over-shoot directly affects the RF compliance with applicable certification schemes. Figure 5 describes VCC voltage under/over-shoot.</td>
</tr>
</tbody>
</table>

Table 6: Summary of VCC supply requirements
1.5.1.2 VCC consumption in 2G connected mode

When a GSM call is established, the VCC consumption is determined by the current consumption profile typical of the GSM transmitting and receiving bursts.

The current consumption peak during a transmission slot is strictly dependent on the transmitted power, which is regulated by the network. The transmitted power in the transmit slot is also the more relevant factor for determining the average current consumption.

If the module is transmitting in 2G single-slot mode (as in GSM talk mode) in the 850 or 900 MHz bands, at the maximum RF power control level (approximately 2 W or 33 dBm in the Tx slot/burst), the current consumption can reach an high peak / pulse (see LARA-R2 series data sheet [1]) for 576.9 µs (width of the transmit slot/burst) with a periodicity of 4.615 ms (width of 1 frame = 8 slots/burst), so with a 1/8 duty cycle according to GSM TDMA (Time Division Multiple Access).

If the module is transmitting in 2G single-slot mode in the 1800 or 1900 MHz bands, the current consumption figures are quite less high than the one in the low bands, due to the 3GPP transmitter output power specifications.

During a GSM call, current consumption is not so significantly high in receiving or in monitor bursts and it is low in the bursts unused to transmit / receive.

Figure 4 shows an example of the module current consumption profile versus time in GSM talk mode.

Figure 5 illustrates VCC voltage profile versus time during a GSM call, according to the related VCC current consumption profile described in Figure 4.
When a GPRS connection is established, more than one slot can be used to transmit and/or more than one slot can be used to receive. The transmitted power depends on network conditions, which set the peak current consumption, but following the 3GPP specifications the maximum Tx RF power is reduced if more than one slot is used to transmit, so the maximum peak of current is not as high as can be the case with a 2G single-slot call.

The multi-slot transmission power can be further reduced by configuring the actual Multi-Slot Power Reduction profile with the dedicated AT command, AT+UDCONF=40 (see the u-blox AT commands manual [2]).

If the module transmits in GPRS class 12 in the 850 or 900 MHz bands, at the maximum RF power control level, the current consumption can reach a quite high peak but lower than the one achievable in 2G single-slot mode. This happens for 2.307 ms (width of the 4 transmit slots/bursts) with a periodicity of 4.615 ms (width of 1 frame = 8 slots/bursts), so with a 1/2 duty cycle, according to 2G TDMA.

If the module is in GPRS connected mode in the 1800 or 1900 MHz bands, the current consumption figures are quite less high than the one in the low bands, due to 3GPP transmitter output power specifications.

Figure 6 reports the current consumption profiles in GPRS class 12 connected mode, in the 850 or 900 MHz bands, with 4 slots used to transmit and 1 slot used to receive.

![Current Consumption Profile](image)

Figure 6: VCC current consumption profile versus time during a 2G GPRS/EDGE multi-slot connection (4 TX slots, 1 RX slot)

For EDGE connections, the VCC current consumption profile is very similar to the GPRS current profile, so the image shown in Figure 6, representing the current consumption profile in GPRS class 12 connected mode, is valid for the EDGE class 12 connected mode as well.
1.5.1.3 VCC consumption in 3G connected mode

During a 3G connection, the module can transmit and receive continuously due to the Frequency Division Duplex (FDD) mode of operation with the Wideband Code Division Multiple Access (WCDMA).

The current consumption depends on output RF power, which is always regulated by the network (the current base station) sending power control commands to the module. These power control commands are logically divided into a slot of 666 µs, so the rate of power change can reach a maximum rate of 1.5 kHz.

There are no high current peaks as in the 2G connection, since transmission and reception are continuously enabled due to FDD WCDMA implemented in the 3G that differs from the TDMA implemented in the 2G case.

In the worst case scenario, corresponding to a continuous transmission and reception at maximum output power (approximately 250 mW or 24 dBm), the average current drawn by the module at the VCC pins is considerable (see the “Current consumption” section in LARA-R2 series data sheet [1]). At the lowest output RF power (approximately 0.01 µW or –50 dBm), the current drawn by the internal power amplifier is strongly reduced. The total current drawn by the module at the VCC pins is due to baseband processing and transceiver activity.

Figure 7 shows an example of the current consumption profile of the module in 3G WCDMA/HSPA continuous transmission mode.

![Current consumption profile](image)
1.5.1.4 VCC consumption in LTE connected mode

During an LTE connection, the module can transmit and receive continuously due to the Frequency Division Duplex (FDD) mode of operation used in LTE radio access technology.

The current consumption depends on output RF power, which is always regulated by the network (the current base station) sending power control commands to the module. These power control commands are logically divided into a slot of 0.5 ms (time length of one Resource Block), thus the rate of power change can reach a maximum rate of 2 kHz.

The current consumption profile is similar to that in 3G radio access technology. Unlike the 2G connection mode, which uses the TDMA mode of operation, there are no high current peaks since transmission and reception are continuously enabled in FDD.

In the worst case scenario, corresponding to a continuous transmission and reception at maximum output power (approximately 250 mW or 24 dBm), the average current drawn by the module at the VCC pins is considerable (see the “Current consumption” section in LARA-R2 series data sheet [1]). At the lowest output RF power (approximately 0.1 µW or –40 dBm), the current drawn by the internal power amplifier is strongly reduced and the total current drawn by the module at the VCC pins is due to baseband processing and transceiver activity.

Figure 8 shows an example of the module current consumption profile versus time in LTE connected mode. Detailed current consumption values can be found in LARA-R2 series data sheet [1].

![Figure 8: VCC current consumption profile versus time during LTE connection (TX and RX continuously enabled)](image)
1.5.1.5 VCC consumption in cyclic idle/active mode (power saving enabled)

The power saving configuration is disabled by default, but it can be enabled using the appropriate AT command (see u-blox AT commands manual [2], AT+UPSV command). When power saving is enabled, the module automatically enters low power idle mode whenever possible, reducing current consumption.

When the power saving configuration is enabled and the module is registered or attached to a network, the module automatically enters the low power idle mode whenever possible, but it must periodically monitor the paging channel of the current base station (paging block reception), in accordance to the 2G / 3G / LTE system requirements, even if connected mode is not enabled by the application. When the module monitors the paging channel, it wakes up to the active mode to enable the reception of the paging block. In between, the module switches to low power idle mode. This is known as discontinuous reception (DRX).

The module processor core is activated during the paging block reception, and automatically switches its reference clock frequency from 32 kHz to the 26 MHz used in active mode. The time period between two paging block receptions is defined by the network. This is the paging period parameter, fixed by the base station through broadcast channel sent to all users on the same serving cell:

- For 2G RAT, the paging period can vary from 470.8 ms (DRX = 2, length of 2 x 51 2G frames = 2 x 51 x 4.615 ms) up to 2118.4 ms (DRX = 9, length of 9 x 51 2G frames = 9 x 51 x 4.615 ms).
- For 3G radio access technology, the paging period can vary from 640 ms (DRX = 6, i.e. length of 2^6 3G frames = 64 x 10 ms) up to 5120 ms (DRX = 9, length of 2^9 3G frames = 512 x 10 ms).
- For LTE radio access technology, the paging period can vary from 320 ms (DRX = 5, i.e. length of 2^5 LTE frames = 32 x 10 ms) up to 2560 ms (DRX = 8, length of 2^8 LTE frames = 256 x 10 ms).

Figure 9 illustrates a typical example of the module current consumption profile when power saving is enabled. The module is registered with the network, automatically enters the low power idle mode and periodically wakes up to active mode to monitor the paging channel for the paging block reception. Detailed current consumption values can be found in the LARA-R2 series data sheet [1]).
1.5.1.6 VCC consumption in fixed active mode (power saving disabled)

Power saving configuration is disabled by default, or it can be disabled using the appropriate AT command (see the u-blox AT commands manual [2], AT+UPSV command). When power saving is disabled, the module does not automatically enter idle mode whenever possible: the module remains in active mode.

The module processor core is activated during active mode, and the 26 MHz reference clock frequency is used.

Figure 10 illustrates a typical example of the module current consumption profile when power saving is disabled. In such case, the module is registered with the network and while active mode is maintained, the receiver is periodically activated to monitor the paging channel for paging block reception. Detailed current consumption values can be found in the LARA-R2 series data sheet [1].

![Diagram of VCC current consumption profile with power saving disabled and module registered with the network: active mode is always held and the receiver is periodically activated to monitor the paging channel for paging block reception](image-url)

<table>
<thead>
<tr>
<th>Paging period Case</th>
<th>Time [s]</th>
<th>Current [mA]</th>
<th>Time [ms]</th>
<th>Current [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G</td>
<td>0.44-2.09s</td>
<td>RX Enabled</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3G</td>
<td>0.61-5.09s</td>
<td>RX Enabled</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>LTE</td>
<td>0.32-2.56s</td>
<td>RX Enabled</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: The diagram illustrates the typical current consumption profile in active mode with power saving disabled. The values provided are indicative and may vary based on specific operating conditions and network configurations.
1.5.2 RTC supply input/output (V_BCKP)

The V_BCKP pin of LARA-R2 series modules connects the supply for the Real Time Clock (RTC) and Power-On internal logic. This supply domain is internally generated by a linear LDO regulator integrated in the Power Management Unit, as described in Figure 11. The output of this linear regulator is always enabled when the main voltage supply provided to the module through the VCC pins is within the valid operating range, with the module switched off or switched on.

![RTC supply input/output (V_BCKP) and 32 kHz RTC timing reference clock simplified block diagram](image)

The RTC provides the module time reference (date and time) that is used to set the wake-up interval during the low power idle mode periods, and is able to make the programmable alarm functions available.

The RTC functions are also available in power-down mode when the V_BCKP voltage is within its valid range (specified in the “Input characteristics of Supply/Power pins” table in LARA-R2 series data sheet [1]). The RTC can be supplied from an external back-up battery through the V_BCKP, when the main module voltage supply is not applied to the VCC pins. This lets the time reference (date and time) run until the V_BCKP voltage is within its valid range, even when the main supply is not provided to the module.

Consider that the module cannot switch on if a valid voltage is not present on VCC, even when the RTC is supplied through V_BCKP (meaning that VCC is mandatory to switch on the module).

The RTC has a very low current consumption, but is highly temperature dependent. For example, V_BCKP current consumption at the maximum operating temperature can be higher than the typical value at +25 °C specified in the “Input characteristics of Supply/Power pins” table in the LARA-R2 series data sheet [1].

If V_BCKP is left unconnected and the module main voltage supply is removed from VCC, the RTC is supplied from the bypass capacitor mounted inside the module. However, this capacitor is not able to provide a long buffering time: within a few milliseconds, the voltage on V_BCKP will drop below the valid range. This has no impact on cellular connectivity, as all the module functionalities do not rely on date and time settings.
1.5.3 Generic digital interfaces supply output (V_INT)

The V_INT output pin of the LARA-R2 series modules is connected to an internal 1.8 V supply with a current capability specified in the LARA-R2 series data sheet [1]. This supply is internally generated by a switching step-down regulator integrated in the Power Management Unit and it is internally used to source the generic digital I/O interfaces of the cellular module, as described in Figure 12. The output of this regulator is enabled when the module is switched on and it is disabled when the module is switched off.

![Figure 12: LARA-R2 series interfaces supply output (V_INT) simplified block diagram](image)

The switching regulator operates in Pulse Width Modulation (PWM) mode for greater efficiency at high output loads and it automatically switches to Pulse Frequency Modulation (PFM) power save mode for greater efficiency at low output loads. The V_INT output voltage ripple is specified in the LARA-R2 series data sheet [1].
1.6 System function interfaces

1.6.1 Module power-on

When the LARA-R2 series modules are in the not-powered mode (switched off, i.e. the VCC module supply is not applied), they can be switched on as following:

- Rising edge on the VCC input to a valid voltage for module supply, i.e. applying module supply: the modules switch on if the VCC supply is applied, starting from a voltage value of less than 2.1 V, with a rise time from 2.3 V to 2.8 V of less than 4 ms, reaching a proper nominal voltage value within the VCC operating range.

Alternately, in case for example the fast rise time on VCC rising edge cannot be guaranteed by the application, LARA-R2 series modules can be switched on from not-powered mode as following:

- RESET_N input pin is held low by the external application during the VCC rising edge, so that the modules will switch on when the external application releases the RESET_N input pin from the low logic level after the VCC supply voltage stabilizes at its proper nominal value within the operating range
- PWR_ON input pin is held low by the external application during the VCC rising edge, so that the modules will switch on when the external application releases the PWR_ON input pin from the low logic level after the VCC supply voltage stabilizes at its proper nominal value within the operating range

When the LARA-R2 series modules are in the power-off mode (i.e. properly switched off as described in section 1.6.2, with valid VCC module supply applied), they can be switched on as following:

- Low pulse on the PWR_ON pin, which is normally set high by an internal pull-up, for a valid time period: the modules start the internal switch-on sequence when the external application releases the PWR_ON pin from the low logic level after that it has been set low for an appropriate time period
- Rising edge on the RESET_N pin, i.e. releasing the pin from the low level, as that the pin is normally set high by an internal pull-up: the modules start the internal switch-on sequence when the external application releases the RESET_N pin from the low logic level
- RTC alarm, i.e. pre-programmed alarm by AT+CALA command (see the u-blox AT commands manual [2]).

As described in Figure 13, the LARA-R2 series PWR_ON input is equipped with an internal active pull-up resistor to the V_BCKP supply: the PWR_ON input voltage thresholds are different from the other generic digital interfaces. Detailed electrical characteristics are described in the LARA-R2 series data sheet [1].

![LARA-R2 series PWR_ON input description](image-url)
Figure 14 shows the module switch-on sequence from the not-powered mode, describing the following phases:

- The external supply is applied to the VCC module supply inputs, representing the start-up event.
- The V_BCKP RTC supply output is suddenly enabled by the module as VCC reaches a valid voltage value.
- The PWR_ON and the RESET_N pins suddenly rise to high logic level due to internal pull-ups.
- All the generic digital pins of the module are tri-stated until the switch-on of their supply source (V_INT).
- The internal reset signal is held low: the baseband core and all the digital pins are held in the reset state. The reset state of all the digital pins is reported in the pin description table of LARA-R2 series data sheet [1].
- When the internal reset signal is released, any digital pin is set in a proper sequence from the reset state to the default operational configured state. The duration of this pins’ configuration phase differs within generic digital interfaces and the USB interface due to host / device enumeration timings (see section 1.9.2).
- The module is fully ready to operate after all interfaces are configured.

The greeting text can be activated by means of the +CSGT AT command (see u-blox AT commands manual [2]) to notify the external application that the module is ready to operate (i.e. ready to reply to AT commands) and the first AT command can be sent to the module, given that autobauding must be disabled on the UART to let the module sending the greeting text: the UART must be configured at a fixed baud rate (the baud rate of the application processor) instead of the default autobauding, otherwise the module does not know the baud rate to be used for sending the greeting text (or any other URC) at the end of the internal boot sequence.

- The Internal Reset signal is not available on a module pin, but the host application can monitor the V_INT pin to sense the start of the LARA-R2 series module switch-on sequence.
- Before the switch-on of the generic digital interface supply source (V_INT) of the module, no voltage driven by an external application should be applied to any generic digital interface of the module.
- Before the LARA-R2 series module is fully ready to operate, the host application processor should not send any AT command over the AT communication interfaces (USB, UART) of the module.
- The duration of the LARA-R2 series modules’ switch-on routine can vary depending on the application / network settings and any concurrent module activities.
1.6.2 Module power-off

LARA-R2 series can be properly switched off by:

- AT+CPWROFF command (see u-blox AT commands manual [2]). The current parameter settings are saved in the module’s non-volatile memory and a proper network detach is performed.
- Low pulse on the PWR_ON pin, which is normally set high by an internal pull-up, for a valid time period (see the LARA-R2 series data sheet [1]): the modules start the internal switch-off sequence when the external application releases the PWR_ON line from the low logic level, after that it has been set low for an appropriate time period.

An abrupt under-voltage shutdown occurs on LARA-R2 series modules when the VCC module supply is removed. If this occurs, it is not possible to perform the storing of the current parameter settings in the module’s non-volatile memory or to perform a proper network detach.

It is highly recommended to avoid an abrupt removal of the VCC supply during LARA-R2 series modules normal operations: the switch-off procedure must be started by the AT+CPWROFF command, waiting for the command response for an appropriate time period (see the u-blox AT commands manual [2]), and then a proper VCC supply must be held at least until the end of the modules’ internal switch-off sequence, which occurs when the generic digital interfaces supply output (V_INT) is switched off by the module.

An abrupt hardware shutdown occurs on LARA-R2 series modules when a low level is applied on the RESET_N pin. In this case, the current parameter settings are not saved in the module’s non-volatile memory and a proper network detach is not performed.

It is highly recommended to avoid an abrupt hardware shutdown of the module by forcing a low level on the RESET_N input pin during module normal operation: the RESET_N line should be set low only if a reset or shutdown via AT commands fails or if the module does not reply to a specific AT command after a time period longer than the one defined in the u-blox AT commands manual [2].

An over-temperature or an under-temperature shutdown occurs on LARA-R2 series modules when the temperature measured within the cellular module reaches the dangerous area, if the optional Smart Temperature Supervisor feature is enabled and configured by the dedicated AT command. For more details, see section 1.14.16 and u-blox AT commands manual [2], +USTS AT command.
Figure 15 illustrates the LARA-R2 series modules switch-off sequence started by means of the AT+CPWROFF command, allowing storage of the current parameter settings in the module’s non-volatile memory and a proper network detach, with the following phases:

- When the +CPWROFF AT command is sent, the module starts the switch-off routine.
- The module replies OK on the AT interface: the switch-off routine is in progress.
- At the end of the switch-off routine, all the digital pins are tri-stated and all the internal voltage regulators are turned off, including the generic digital interfaces supply (V_INT), except the RTC supply (V_BCKP).
- Then the module remains in power-off mode as long as a -on event does not occur (e.g. applying a proper low level to the PWR_ON input, or applying a proper low level to the RESET_N input), and enters not-powered mode if the supply is removed from the VCC pins.

The Internal Reset signal is not available on a module pin, but the application can monitor the V_INT pin to sense the end of the LARA-R2 series switch-off sequence.

The VCC supply can be removed only after the end of the module internal switch-off routine, i.e. only after that the V_INT voltage level has gone low.

The duration of each phase in the LARA-R2 series modules’ switch-off routines can largely vary depending on the application / network settings and the concurrent module activities.
Figure 16 illustrates the LARA-R2 series modules' switch-off sequence started by means of the PWR_ON input pin, allowing storage of current parameter settings in the module's non-volatile memory and a proper network detach, with the following phases:

- A low pulse with appropriate time duration (see LARA-R2 series data sheet [1]) is applied at the PWR_ON input pin, which is normally set high by an internal pull-up: the module starts the switch-off routine when the PWR_ON signal is released from the low logical level.
- At the end of the switch-off routine, all the digital pins are tri-stated and all the internal voltage regulators are turned off, including the generic digital interfaces supply (V_INT), except the RTC supply (V_BCKP).
- Then the module remains in power-off mode as long as a switch-on event does not occur (e.g. applying a proper low level to the PWR_ON input, or applying a proper low level to the RESET_N input), and enters not-powered mode if the supply is removed from the VCC pins.

![Diagram](image)

The Internal Reset signal is not available on a module pin, but the application can monitor the V_INT pin to sense the end of the switch-off sequence.

The VCC supply can be removed only after the end of the module internal switch-off routine, i.e. only after that the V_INT voltage level has gone low.

The duration of each phase in the LARA-R2 series modules’ switch-off routines can largely vary depending on the application / network settings and the concurrent module activities.
1.6.3 Module reset

LARA-R2 series modules can be properly reset (rebooted) by:

- AT+CFUN command (see the u-blox AT commands manual [2] for more details).

This command causes an “internal” or “software” reset of the module, which is an asynchronous reset of the module baseband processor. The current parameter settings are saved in the module’s non-volatile memory and a proper network detach is performed: this is the correct way to reset the modules.

An abrupt hardware reset occurs on LARA-R2 series modules when a low level is applied on the RESET_N input pin for a specific time period. In this case, the current parameter settings are not saved in the module’s non-volatile memory and a proper network detach is not performed.

It is highly recommended to avoid an abrupt hardware reset of the module by forcing a low level on the RESET_N input during modules normal operation: the RESET_N line should be set low only if reset or shutdown via AT commands fails or if the module does not provide a reply to a specific AT command after a time period longer than the one defined in the u-blox AT commands manual [2].

As described in Figure 17, the RESET_N input pins are equipped with an internal pull-up to the V_BCKP supply.

![Figure 17: LARA-R2 series RESET_N input equivalent circuit description](image)

For more electrical characteristics details, see the LARA-R2 series data sheet [1].

1.6.4 Module / host configuration selection

The HOST_SELECT pin functionality is not supported by the "02", "62" and "82" product versions. The modules include one pin (HOST_SELECT) to select the module / host application processor configuration: the pin is available to select, enable, connect, disconnect and subsequently re-connect the HSIC interface.

The LARA-R2 series data sheet [1] describes the detailed electrical characteristics of the HOST_SELECT pin.
1.7 Antenna interface

1.7.1 Antenna RF interfaces (ANT1 / ANT2)

LARA-R2 series modules provide two RF interfaces for connecting the external antennas:

- **ANT1** represents the primary RF input/output for transmission and reception of RF signals.
- **ANT1** pin has a nominal characteristic impedance of 50 Ω and must be connected to the primary Tx / Rx antenna through a 50 Ω transmission line to allow proper RF transmission and reception.
- **ANT2** represents the secondary RF input for the reception of the LTE / 3G RF signals for the Down-Link Rx diversity radio technology supported by LARA-R2 modules as a required feature for LTE category 1 UEs.
- **ANT2** pin has a nominal characteristic impedance of 50 Ω and must be connected to the secondary Rx antenna through a 50 Ω transmission line to allow proper RF reception.

1.7.1.1 Antenna RF interface requirements

Table 7, Table 8 and Table 9 summarize the requirements for the RF interfaces (**ANT1** / **ANT2**). See section 2.4.1 for suggestions to properly design the circuits compliant with these requirements.

⚠️ The antenna circuits affect the RF compliance of the host end-device integrating the LARA-R2 series modules with applicable required certification schemes (for more details see section 4). Compliance is met by fulfilling the requirements for the antenna RF interfaces (**ANT1** / **ANT2**) summarized in Table 7, Table 8 and Table 9.

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>50 Ω nominal characteristic impedance</td>
<td>The impedance of the antenna RF connection must match the 50 Ω impedance of the ANT1 port.</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>See the LARA-R2 series datasheet [1]</td>
<td>The required frequency range of the antenna connected to the ANT1 port depends on the operating bands of the used cellular module and the used mobile network.</td>
</tr>
<tr>
<td>Return Loss</td>
<td>$S11 < -10$ dB (VSWR < 2:1) recommended $S11 < -6$ dB (VSWR < 3:1) acceptable</td>
<td>The Return loss or the S11, as the VSWR, refers to the amount of reflected power, measuring how well the antenna RF connection matches the 50 Ω characteristic impedance of the ANT1 port. The impedance of the antenna termination must match as much as possible the 50 Ω nominal impedance of the ANT1 port over the operating frequency range, reducing as much as possible the reflected power.</td>
</tr>
<tr>
<td>Efficiency</td>
<td>> -1.5 dB (> 70%) recommended > -3.0 dB (> 50%) acceptable</td>
<td>The radiation efficiency is the ratio of the radiated power to the power delivered to the antenna input: the efficiency is a measure of how well an antenna receives or transmits. The radiation efficiency of the antenna connected to the ANT1 port needs to be enough high over the operating frequency range to comply with the Over-The-Air (OTA) radiated performance requirements, as the Total Radiated Power (TRP) and the Total Isotropic Sensitivity (TIS), specified by the applicable related certification schemes.</td>
</tr>
<tr>
<td>Maximum Gain</td>
<td>According to radiation exposure limits</td>
<td>The power gain of an antenna is the radiation efficiency multiplied by the directivity: the gain describes how much power is transmitted in the direction of peak radiation to that of an isotropic source. The maximum gain of the antenna connected to the ANT1 port must not exceed the herein stated value to comply with regulatory agencies radiation exposure limits. For additional info, see sections 4.2.2, 4.3.1 and/or 4.4.</td>
</tr>
<tr>
<td>Input Power</td>
<td>> 33 dBm (> 2 W) for LARA-R21 > 24 dBm (> 250 mW) for other LARA-R2</td>
<td>The antenna connected to the ANT1 port must support the maximum power transmitted by the modules with an adequate margin.</td>
</tr>
</tbody>
</table>

Table 7: Summary of primary Tx/Rx antenna RF interface (ANT1) requirements
Impedance

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Ω nominal characteristic impedance</td>
<td>The impedance of the antenna RF connection must match the 50 Ω impedance of the ANT2 port.</td>
</tr>
</tbody>
</table>

Frequency Range

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>See the LARA-R2 series datasheet [1]</td>
<td>The required frequency range of the antennas connected to the ANT2 port depends on the operating bands of the used cellular module and the used mobile network.</td>
</tr>
</tbody>
</table>

Return Loss

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁₁ < -10 dB (VSWR < 2:1) recommended</td>
<td>The Return loss or the S₁₁, as the VSWR, refers to the amount of reflected power, measuring how well the antenna RF connection matches the 50 Ω characteristic impedance of the ANT2 port.</td>
</tr>
<tr>
<td>S₁₁ < -6 dB (VSWR < 3:1) acceptable</td>
<td>The impedance of the antenna termination must match as much as possible the 50 Ω nominal impedance of the ANT2 port over the operating frequency range, reducing as much as possible the amount of reflected power.</td>
</tr>
</tbody>
</table>

Efficiency

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>> -1.5 dB (> 70%) recommended</td>
<td>The radiation efficiency is the ratio of the radiated power to the power delivered to antenna input: the efficiency is a measure of how well an antenna receives or transmits.</td>
</tr>
<tr>
<td>> -3.0 dB (> 50%) acceptable</td>
<td>The radiation efficiency of the antenna connected to the ANT2 port needs to be enough high over the operating frequency range to comply with the Over-The-Air (OTA) radiated performance requirements, as the TIS, specified by applicable related certification schemes.</td>
</tr>
</tbody>
</table>

Efficiency Imbalance

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.5 dB recommended</td>
<td>The radiation efficiency imbalance is the ratio of the primary (ANT1) antenna efficiency to the secondary (ANT2) antenna efficiency: the efficiency imbalance is a measure of how much better an antenna receives or transmits compared to the other antenna.</td>
</tr>
<tr>
<td>< 1.0 dB acceptable</td>
<td>The radiation efficiency of the secondary antenna needs to be roughly the same of the radiation efficiency of the primary antenna for good RF performance.</td>
</tr>
</tbody>
</table>

Envelope Correlation Coefficient

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.4 recommended</td>
<td>The Envelope Correlation Coefficient (ECC) between the primary (ANT1) and the secondary (ANT2) antennas is an indicator of the 3D radiation pattern similarity between the two antennas: low ECC arises from antenna patterns with radiation lobes in different directions.</td>
</tr>
<tr>
<td>< 0.5 acceptable</td>
<td>The ECC between primary and secondary antennas needs to be sufficiently low to comply with radiated performance requirements specified by the related certification schemes.</td>
</tr>
</tbody>
</table>

Isolation

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 15 dB recommended</td>
<td>The antenna to antenna isolation is the loss between the primary (ANT1) and the secondary (ANT2) antennas: high isolation arises from weakly coupled antennas.</td>
</tr>
<tr>
<td>> 10 dB acceptable</td>
<td>The isolation between primary and secondary antenna needs to be high for good RF performance.</td>
</tr>
</tbody>
</table>

Table 8: Summary of secondary Rx antenna RF interface (ANT2) requirements

Table 9: Summary of the primary (ANT1) and secondary (ANT2) antennas relationship requirements
1.7.2 Antenna detection interface (ANT_DET)

The antenna detection is based on ADC measurement. The AN_DET pin is an Analog to Digital Converter (ADC) provided to sense the antenna presence.

The antenna detection function provided by the AN_DET pin is an optional feature that can be implemented if the application requires it. The antenna detection is forced by the +UANTR AT command. See the u-blox AT commands manual [2] for more details on this feature.

The AN_DET pin generates a DC current (for detailed characteristics, see the LARA-R2 series data sheet [1]) and measures the resulting DC voltage, thus determining the resistance from the antenna connector provided on the application board to GND. The requirements to achieve antenna detection functionality are the following:

- an RF antenna assembly with a built-in resistor (diagnostic circuit) must be used
- an antenna detection circuit must be implemented on the application board

See section 2.4.2 for the antenna detection circuit on the application board and the diagnostic circuit on the antenna assembly design-in guidelines.

1.8 SIM interface

1.8.1 SIM card interface

LARA-R2 series modules provide a high-speed SIM/ME interface, including automatic detection and configuration of the voltage required by the connected SIM card or chip.

Both 1.8 V and 3 V SIM types are supported: activation and deactivation with an automatic voltage switch from 1.8 V to 3 V is implemented, according to the ISO-IEC 7816-3 specifications. The VSIM supply output pin provides internal short circuit protection to limit the start-up current and protect the device in short circuit situations.

The SIM driver supports the PPS (Protocol and Parameter Selection) procedure for baud-rate selection, according to the values determined by the SIM Card.

1.8.2 SIM card detection interface (SIM_DET)

The GPIO5 pin is configured by default to detect the external SIM card mechanical/physical presence. The pin is configured as input, and it can sense SIM card presence as intended to be properly connected to the mechanical switch of a SIM card holder as described in section 2.5:

- Low logic level at GPIO5 input pin is recognized as SIM card not present
- High logic level at GPIO5 input pin is recognized as SIM card present

The SIM card detection function provided by the GPIO5 pin is an optional feature that can be implemented/used or not according to the application requirements: an Unsolicited Result Code (URC) is generated each time that there is a change of status (for more details, see the u-blox AT commands manual [2], +UGPIOC, +CIND, +CMER).

The optional function “SIM card hot insertion/removal” can be additionally configured on the GPIO5 pin by the specific AT command (see the u-blox AT commands manual [2], +UDCONF=50), in order to enable/disable the SIM interface upon detection of the external SIM card physical insertion/removal.
1.9 Data communication interfaces

LARA-R2 series modules provide the following serial communication interfaces:

- **UART interface**: Universal Asynchronous Receiver/Transmitter serial interface available for the communication with a host application processor (AT commands, data communication, FW update by means of FOAT), for FW update by means of the u-blox EasyFlash tool and for diagnostics (see section 1.9.1).
- **USB interface**: Universal Serial Bus 2.0 compliant interface available for the communication with a host application processor (AT commands, data communication, FW update by means of the FOAT feature), for FW update by means of the u-blox EasyFlash tool and for diagnostics (see section 1.9.2).
- **HSIC interface**: High-Speed Inter-Chip USB compliant interface available for the communication with a host application processor (AT commands, data communication, FW update by means of the FOAT feature), for FW update by means of the u-blox EasyFlash tool and for diagnostics (see section 1.9.3).
- **DDC interface**: I2C bus compatible interface available for the communication with u-blox GNSS positioning chips or modules and with external I2C devices as an audio codec (see section 1.9.4).
- **SDIO interface**: Secure Digital Input Output interface available for the communication with compatible u-blox short range radio communication Wi-Fi modules (see section 1.9.5).

1.9.1 UART interface

1.9.1.1 UART features

The UART interface is a 9-wire 1.8 V unbalanced asynchronous serial interface available on all the LARA-R2 series modules, supporting:

- AT command mode
- Data mode and Online command mode
- Multiplexer protocol functionality (see 1.9.1.5)
- FW upgrades by means of the FOAT feature (see 1.14.14 and the FW update application note [23])
- FW upgrades by means of the u-blox EasyFlash tool (see the FW update application note [23])
- Trace log capture (diagnostic purposes)

The UART interface provides RS-232 functionality conforming to ITU-T V.24 Recommendation [5], with CMOS compatible signal levels: 0 V for low data bit or ON state, and 1.8 V for high data bit or OFF state (for detailed electrical characteristics, see the LARA-R2 series data sheet [1]), providing:

- data lines (RXD as output, TXD as input),
- hardware flow control lines (CTS as output, RTS as input),
- modem status and control lines (DTR as input, DSR as output, DCD as output, RI as output).

The modules are designed to operate as cellular modems, i.e. as the data circuit-terminating equipment (DCE) according to the ITU-T V.24 Recommendation [5]. A host application processor connected to the module through the UART interface represents the data terminal equipment (DTE).

UART signal names of the modules conform to the ITU-T V.24 [5]: e.g. TXD line represents data transmitted by the DTE (host processor output) and received by the DCE (module input).

LARA-R2 series modules' UART interface is configured by default in AT command mode: the module waits for AT command instructions and interprets all the characters received as commands to execute.

8 See the u-blox AT commands manual [2] for the definition of the command mode, data mode, and online command mode.
All the functionalities supported by LARA-R2 series modules can be set and configured by AT commands:

- AT commands according to 3GPP TS 27.007 [6], 3GPP TS 27.005 [7], 3GPP TS 27.010 [8]
- u-blox AT commands (for the complete list and syntax, see the u-blox AT commands manual [2])

All flow control handshakes are supported by the UART interface and can be set by appropriate AT commands (see u-blox AT commands manual [2], &K, +IFC, \Q AT commands): hardware, software, or none flow control.

☞ Hardware flow control is enabled by default.

The one-shot autobauding is supported: the automatic baud rate detection is performed only once, at module start-up. After the detection, the module works at the detected baud rate and the baud rate can only be changed by an AT command (see the u-blox AT commands manual [2], +IPR command).

☞ One-shot automatic baud rate recognition (autobauding) is enabled by default.

The following baud rates can be configured by AT command (see u-blox AT commands manual [2], +IPR):

- 9,600 bit/s
- 19,200 bit/s
- 38,400 bit/s
- 57,600 bit/s
- 115,200 bit/s – this is the default value when one-shot autobauding is disabled
- 230,400 bit/s
- 460,800 bit/s
- 921,600 bit/s
- 3,000,000 bit/s
- 3,250,000 bit/s
- 6,000,000 bit/s
- 6,500,000 bit/s

☞ Baud rates higher than 460,800 bit/s cannot be automatically detected by LARA-R2 series modules.
The modules support one-shot automatic frame recognition in conjunction with one-shot autobauding. The following frame formats can be configured by an AT command (see the u-blox AT commands manual [2], +ICF):

- 8N1 (8 data bits, no parity, 1 stop bit), default frame configuration with a fixed baud rate, see Figure 18
- 8E1 (8 data bits, even parity, 1 stop bit)
- 8O1 (8 data bits, odd parity, 1 stop bit)
- 8N2 (8 data bits, no parity, 2 stop bits)
- 7E1 (7 data bits, even parity, 1 stop bit)
- 7O1 (7 data bits, odd parity, 1 stop bit)

![Figure 18: Description of the UART 8N1 frame format (8 data bits, no parity, 1 stop bit)](image)

1.9.1.2 UART AT interface configuration

The UART interface of LARA-R2 series modules is available as the AT command interface with the default configuration described in Table 10 (for more details and information about further settings, see the u-blox AT commands manual [2]).

<table>
<thead>
<tr>
<th>Interface</th>
<th>AT Settings</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART interface</td>
<td>AT interface: enabled</td>
<td>AT command interface is enabled by default on the UART physical interface</td>
</tr>
<tr>
<td></td>
<td>AT+IPR=0</td>
<td>One-shot autobauding enabled by default on the modules</td>
</tr>
<tr>
<td></td>
<td>AT+ICF=3,1</td>
<td>8N1 frame format enabled by default</td>
</tr>
<tr>
<td></td>
<td>AT&K3</td>
<td>HW flow control enabled by default</td>
</tr>
<tr>
<td></td>
<td>AT&S1</td>
<td>DSR line (Circuit 107 in ITU-T V.24) set ON in data mode(^9) and set OFF in command mode(^9)</td>
</tr>
<tr>
<td></td>
<td>AT&D1</td>
<td>Upon an ON-to-OFF transition of the DTR line (Circuit 108/2 in ITU-T V.24), the module (DCE) enters online command mode(^8) and issues an OK result code</td>
</tr>
<tr>
<td></td>
<td>AT&C1</td>
<td>DCD line (Circuit 109 in ITU-T V.24) changes in accordance with the Carrier detect status; ON if the Carrier is detected, OFF otherwise</td>
</tr>
<tr>
<td>MUX protocol</td>
<td>disabled</td>
<td>Multiplexing mode is disabled by default and it can be enabled by the AT+CMUX command. For more details, see the Mux implementation application note [21]. The following virtual channels are defined: Channel 0: control channel Channel 1 – 5: AT commands / data connection Channel 6: GNSS tunneling(^10)</td>
</tr>
</tbody>
</table>

Table 10: Default UART AT interface configuration

\(^9\) See the u-blox AT commands manual [2] for the definition of the command mode, data mode, and online command mode.

\(^10\) Not supported by LARA-R204-02B and LARA-R211-02B-00 product versions.
1.9.1.3 UART signal behavior

At the module switch-on, before the UART interface initialization (as described in the power-on sequence reported in Figure 14), each pin is first tri-stated and then is set to its related internal reset state. At the end of the boot sequence, the UART interface is initialized, the module is by default in active mode, and the UART interface is enabled as an AT commands interface.

The configuration and the behavior of the UART signals after the boot sequence are described below. See section 1.4 for the definition and description of the module operating modes referred to in this section.

RXD signal behavior

The module data output line (RXD) is set by default to the OFF state (high level) at UART initialization. The module holds RXD in the OFF state until the module does not transmit any data.

TXD signal behavior

The module data input line (TXD) is set by default to the OFF state (high level) at UART initialization. The TXD line is then held by the module in the OFF state if the line is not activated by the DTE: an active pull-up is enabled inside the module on the TXD input.

CTS signal behavior

The module hardware flow control output (CTS line) is set to the ON state (low level) at UART initialization.

If the hardware flow control is enabled, as it is by default, the CTS line indicates when the UART interface is enabled (data can be sent and received). The module drives the CTS line to the ON state or to the OFF state when it is either able or not able to accept data from the DTE over the UART (see 1.9.1.4 for more details).

☞ If hardware flow control is enabled, then when the CTS line is OFF it does not necessarily mean that the module is in low power idle mode, but only that the UART is not enabled, as the module could be forced to stay in active mode for other activities, e.g. related to the network or related to other interfaces.

☞ When the multiplexer protocol is active, the CTS line state is mapped to FCon / FCoff MUX command for flow control issues outside the power saving configuration while the physical CTS line is still used as a power state indicator. For more details, see Mux implementation application note [21].

The CTS hardware flow control setting can be changed by using AT commands (for more details, see the u-blox AT commands manual [2], AT&K, AT\Q, AT+IFC, AT+UCTS AT command).

☞ When the power saving configuration is enabled by the AT+UPSV command and the hardware flow-control is not implemented in the DTE/DCE connection, data sent by the DTE can be lost: the first character sent when the module is in low power idle mode will not be a valid communication character (see section 1.9.1.4 and in particular the sub-section “Wake-up via data reception” for further details).

11 Refer to the pin description table in the LARA-R2 series datasheet [1].
RTS signal behavior
The hardware flow control input (RTS line) is set by default to the OFF state (high level) at UART initialization. The module then holds the RTS line in the OFF state if the line is not activated by the DTE: an active pull-up is enabled inside the module on the RTS input.

If the HW flow control is enabled, as it is by default, the module monitors the RTS line to detect permission from the DTE to send data to the DTE itself. If the RTS line is set to the OFF state, any ongoing data transmission from the module is interrupted until the subsequent RTS line changes to the ON state.

☞ The DTE must still be able to accept a certain number of characters after the RTS line is set to the OFF state: the module guarantees the transmission interruption within two characters from RTS state change.

Module behavior according to RTS hardware flow control status can be configured by using AT commands (for more details, see the u-blox AT commands manual [2], AT&K, AT\Q, AT+IFC command descriptions).

If AT+UPSV=2 is set and HW flow control is disabled, the module monitors the RTS line to manage the power saving configuration (for more details, see section 1.9.1.4 and the u-blox AT commands manual [2], AT+UPSV):

- When an OFF-to-ON transition occurs on the RTS input, the UART is enabled and the module is forced to active mode. After ~20 ms, the switch is completed and data can be received without loss. The module cannot enter low power idle mode and the UART is enabled as long as the RTS is in the ON state.
- If the RTS input line is set to the OFF state by the DTE, the UART is disabled (held in low power mode) and the module automatically enters low power idle mode whenever possible.

DSR signal behavior
If AT&S1 is set, as it is by default, the DSR module output line is set by default to the OFF state (high level) at UART initialization. The DSR line is then set to the OFF state when the module is in command mode¹² or in online command mode¹² and is set to the ON state when the module is in data mode¹².

If AT&S0 is set, the DSR module output line is set by default to the ON state (low level) at UART initialization and is then always held in the ON state.

DTR signal behavior
The DTR module input line is set by default to the OFF state (high level) at UART initialization. The module then holds the DTR line in the OFF state if the line is not activated by the DTE: an active pull-up is enabled inside the module on the DTR input.

Module behavior according to DTR status can be changed by AT command (for more details, see the u-blox AT commands manual [2], AT&D command description).

If AT+UPSV=3 is set, the DTR line is monitored by the module to manage the power saving configuration (for more details, see section 1.9.1.4 and the u-blox AT commands manual [2], AT+UPSV command):

- When an OFF-to-ON transition occurs on the DTR input, the UART is enabled and the module is forced to active mode. After ~20 ms, the switch is completed and data can be received without

¹² See the u-blox AT commands manual [2] for the definition of the command mode, data mode, and online command mode
loss. The module cannot enter low power idle mode and the UART is enabled as long as the **DTR** is in the ON state.

- If the **DTR** input line is set to the OFF state by the DTE, the UART is disabled (held in low power mode) and the module automatically enters low power idle mode whenever possible.

DCD signal behavior

If AT&C1 is set, as it is by default, the **DCD** module output line is set by default to the OFF state (high level) at UART initialization. The module then sets the **DCD** line according to the carrier detect status: ON if the carrier is detected, OFF otherwise.

For voice calls, **DCD** is set to the ON state when the call is established.

For data calls, there are the following scenarios regarding the **DCD** signal behavior:

- **Packet Switched Data call**: Before activating the PPP protocol (data mode) a dial-up application must provide the ATD*99***<context_number># to the module: with this command the module switches from command mode to data mode and can accept PPP packets. The module sets the **DCD** line to the ON state, then answers with a CONNECT to confirm the ATD*99 command. The **DCD** ON is not related to the context activation but with the data mode.

- **Circuit Switched Data call**: To establish a data call, the DTE can send the ATD<number> command to the module which sets an outgoing data call to a remote modem (or another data module). Data can be transparent (non reliable) or non transparent (with the reliable RLP protocol). When the remote DCE accepts the data call, the module **DCD** line is set to ON and the CONNECT <communication baudrate> string is returned by the module. At this stage, the DTE can send characters through the serial line to the data module which sends them through the network to the remote DCE attached to a remote DTE.

☞ The **DCD** is set to ON during the execution of the +CMGS, +CMGW, +USOWR, +USODL AT commands requiring input data from the DTE: the **DCD** line is set to the ON state as soon as the switch to binary/text input mode is completed and the prompt is issued; **DCD** line is set to OFF as soon as the input mode is interrupted or completed (for more details see the u-blox AT commands manual [2]).

☞ The **DCD** line is kept in the ON state, even during the online command mode\(^{13}\), to indicate that the data call is still established even if suspended, while if the module enters command mode\(^{13}\), the **DSR** line is set to the OFF state. For more details, see **DSR** signal behavior description.

☞ For scenarios when the **DCD** line setting is requested for different reasons (e.g. SMS texting during online command mode\(^{13}\)), the **DCD** line changes to guarantee the correct behavior for all the scenarios. For example, for SMS texting in online command mode\(^{13}\), if the data call is released, **DCD** is kept ON until the SMS command execution is completed (even if the data call release would request **DCD** set OFF).

If AT&C0 is set, the **DCD** module output line is set by default to the ON state (low level) at UART initialization and is then always held in the ON state.

\(^{13}\) See the u-blox AT commands manual [2] for the definition of the command mode, data mode, and online command mode.
RI signal behavior

The RI module output line is set by default to the OFF state (high level) at UART initialization. Then, during an incoming call, the RI line is switched from the OFF state to the ON state with a 4:1 duty cycle and a 5 s period (ON for 1 s, OFF for 4 s, see Figure 19), until the DTE attached to the module sends the ATA string and the module accepts the incoming data call. The RING string sent by the module (DCE) to the serial port at constant time intervals is not correlated with the switch of the RI line to the ON state.

![RI signal behavior diagram](image)

Figure 19: RI behavior during an incoming call

The RI line can notify an SMS arrival. When the SMS arrives, the RI line switches from OFF to ON for 1 s (see Figure 20), if the feature is enabled by the AT+CNMI command (see the u-blox AT commands manual [2]).

![RI signal SMS arrival diagram](image)

Figure 20: RI behavior at SMS arrival

This behavior allows the DTE to stay in power saving mode until the DCE related event requests service.

For SMS arrival, if several events occur coincidently or in quick succession, each event independently triggers the RI line, although the line will not be deactivated between each event. As a result, the RI line may stay at ON for more than 1 s.

If an incoming call is answered within less than 1 s (with ATA or if auto-answering is set to ATSO=1), then the RI line is set to OFF earlier.

As a result:

- **Note:** RI line monitoring cannot be used by the DTE to determine the number of received SMSes.
- For multiple events (incoming call plus SMS received), the RI line cannot be used to discriminate the two events, but the DTE must rely on the subsequent URCs and interrogate the DCE with proper commands.

The RI line can additionally notify all the URCs and all the incoming data in PPP and Direct Link connections, if the feature is enabled by the AT+URING command (for more details, see the u-blox AT commands manual [2]): the RI line is asserted when one of the configured events occur and it remains asserted for 1 s unless another configured event will happen, with the same behavior described in Figure 20.
1.9.1.4 UART and power-saving

The power saving configuration is controlled by the AT+UPSV command (for the complete description, see the u-blox AT commands manual [2]). When power saving is enabled, the module automatically enters low power idle mode whenever possible, and otherwise the active mode is maintained by the module (see section 1.4 for the definition and description of module operating modes referred to in this section).

The AT+UPSV command configures both the module power saving and also the UART behavior in relation to power saving. The conditions for the module entering low power idle mode also depend on the UART power saving configuration, as the module does not enter the low power idle mode according to any required activity related to the network (within or outside an active call) or any other required concurrent activity related to the functions and interfaces of the module, including the UART interface.

Three different power saving configurations can be set by the AT+UPSV command:

- AT+UPSV=0, power saving disabled (default configuration)
- AT+UPSV=1, power saving enabled cyclically
- AT+UPSV=2, power saving enabled and controlled by the UART RTS input line
- AT+UPSV=3, power saving enabled and controlled by the UART DTR input line

The various power saving configurations that can be set by the +UPSV AT command are described in detail in the following subsections. Table 11 summarizes the UART interface communication process in the various power saving configurations, in relation with HW flow control settings and RTS input line status. For more details on the +UPSV AT command description, refer to the u-blox AT commands manual [2].

<table>
<thead>
<tr>
<th>AT+UPSV</th>
<th>HW flow control</th>
<th>RTS line</th>
<th>DTR line</th>
<th>Communication during idle mode and wake up</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled (AT&K3)</td>
<td>ON</td>
<td>ON or OFF</td>
<td>Data sent by the DTE are correctly received by the module. Data sent by the module is correctly received by the DTE.</td>
</tr>
<tr>
<td>0</td>
<td>Enabled (AT&K3)</td>
<td>OFF</td>
<td>ON or OFF</td>
<td>Data sent by the DTE are correctly received by the module. Data sent by the module is buffered by the module and will be correctly received by the DTE when it is ready to receive data (i.e. RTS line will be ON).</td>
</tr>
<tr>
<td>0</td>
<td>Disabled (AT&K0)</td>
<td>ON or OFF</td>
<td>ON or OFF</td>
<td>Data sent by the DTE is correctly received by the module. Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise data is lost.</td>
</tr>
<tr>
<td>1</td>
<td>Enabled (AT&K3)</td>
<td>ON</td>
<td>ON or OFF</td>
<td>Data sent by the DTE is buffered by the DTE and will be correctly received by the module when it is ready to receive data (when UART is enabled). Data sent by the module is correctly received by the DTE.</td>
</tr>
<tr>
<td>1</td>
<td>Enabled (AT&K3)</td>
<td>OFF</td>
<td>ON or OFF</td>
<td>Data sent by the DTE is buffered by the DTE and will be correctly received by the module when it is ready to receive data (when UART is enabled). Data sent by the module is buffered by the module and will be correctly received by the DTE when it is ready to receive data (i.e. RTS line will be ON).</td>
</tr>
<tr>
<td>1</td>
<td>Disabled (AT&K0)</td>
<td>ON or OFF</td>
<td>ON or OFF</td>
<td>The first character sent by the DTE is lost by the module, but after ~20 ms the UART and the module are woken up: recognition of subsequent characters is guaranteed only after the UART / module complete wake-up (after ~20 ms). Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise the data is lost.</td>
</tr>
<tr>
<td>2</td>
<td>Enabled (AT&K3)</td>
<td>ON or OFF</td>
<td>ON or OFF</td>
<td>Not Applicable: HW flow control cannot be enabled with AT+UPSV=2.</td>
</tr>
<tr>
<td>2</td>
<td>Disabled (AT&K0)</td>
<td>ON</td>
<td>ON or OFF</td>
<td>Data sent by the DTE is correctly received by the module. Data sent by the module is correctly received by the DTE if it is ready to receive data, otherwise data is lost.</td>
</tr>
<tr>
<td>2</td>
<td>Disabled (AT&K0)</td>
<td>OFF</td>
<td>ON or OFF</td>
<td>Data sent by the DTE is lost by the module.</td>
</tr>
</tbody>
</table>
AT+UPSV=0: power saving disabled, fixed active mode

The module does not enter low power idle mode and the UART interface is enabled (data can be sent and received): the CTS line is always held in the ON state after UART initialization. This is the default configuration.

AT+UPSV=1: power saving enabled, cyclic idle/active mode

When the AT+UPSV=1 command is issued by the DTE, the UART will be normally disabled, and then periodically or upon necessity enabled as following:

- During the periodic UART wake-up to receive or send data, also according to the module wake up for the paging reception (see section 1.5.1.5) or other activities
- If the module needs to transmit some data (e.g. URC), the UART is temporarily enabled to send data
- If the DTE sends data with HW flow control disabled, the first character sent causes the UART and module wake-up after ~20 ms: recognition of subsequent characters is guaranteed only after the complete wake-up (see the following subsection "wake up via data reception")

The module automatically enters the low power idle mode whenever possible, but it wakes up to active mode according to the UART periodic wake-up so that the module cyclically enters the low power idle mode and the active mode. Additionally, the module wakes up to active mode according to any required activity related to the network (e.g. for the periodic paging reception described in section 1.5.1.5, or for any other required RF Tx / Rx) or any other required activity related to module functions / interfaces (including the UART itself).

The time period of the UART enable/disable cycle is configured differently when the module is registered with a 2G network compared to when the module is registered with a 3G or LTE network:

- 2G: UART is enabled synchronously with some paging receptions: UART is enabled concurrently to a paging reception, and then, as data has not been received or sent, UART is disabled until the first paging reception that occurs after a timeout of 2.0 s, and so the interface is then enabled again
- 3G or LTE: UART is asynchronously enabled to paging receptions, as UART is enabled for ~20 ms, and then, if data are not received or sent, UART is disabled for 2.5 s, and afterwards the interface is enabled again
Not registered: when a module is not registered with a network, UART is enabled for ~20 ms, and then, if data has not been received or sent, UART is disabled for 2.5 s, and afterwards the interface is enabled again.

When the UART interface is enabled, data can be received. When a character is received, it forces the UART interface to stay enabled for a longer time and it forces the module to stay in the active mode for a longer time, according to the timeout configured by the second parameter of the +UPSV AT command. The timeout can be set from 40 2G-frames (i.e. 40 x 4.615 ms = 184 ms) up to 65,000 2G-frames (i.e. 65,000 x 4.615 ms = 300 s). Default value is 2,000 2G-frames (i.e. 2,000 x 4.615 ms = 9.2 s). Every subsequent character received during the active mode, resets and restarts the timer; hence the active mode duration can be extended indefinitely.

The CTS output line is driven to the ON or OFF state when the module is either able or not able to accept data from the DTE over the UART. Figure 21 illustrates the CTS output line toggling due to paging reception and data received over the UART, with the AT+UPSV=1 configuration.

![Figure 21: CTS output indicates when module's UART is enabled (CTS = ON = low level) or disabled (CTS = OFF = high level)](image)

AT+UPSV=2: power saving enabled and controlled by the RTS line

This configuration can only be enabled with the module hardware flow control disabled (i.e. AT&K0).

The UART interface is disabled after the DTE sets the RTS line to OFF. Afterwards, UART is enabled again, and the module does not enter low power idle mode, as following:

- If an OFF-to-ON transition occurs on the RTS input, this causes the UART / module wake-up after ~20 ms; recognition of subsequent characters is guaranteed only after the complete wake-up, and the UART is kept enabled as long as the RTS input line is set to ON.
- If the module needs to transmit some data (e.g. URC), UART is temporarily enabled to send data.

The module automatically enters the low power idle mode whenever possible but it wakes up to active mode according to any required activity related to the network (e.g. for the periodic paging reception described in section 1.5.1.5, or for any other required RF transmission / reception) or any other required activity related to the module functions / interfaces (including the UART itself).

AT+UPSV=3: power saving enabled and controlled by the DTR line

The UART interface is disabled after the DTE sets the DTR line to OFF. Afterwards, the UART is enabled again, and the module does not enter low power idle mode, as following:

- If an OFF-to-ON transition occurs on the DTR input, this causes the UART / module wake-up after ~20 ms; recognition of subsequent characters is guaranteed only after the complete wake-up, and the UART is kept enabled as long as the DTR input line is set to ON.
- If the module needs to transmit data (e.g. URC), the UART is temporarily enabled to send data.

The module automatically enters the low power idle mode whenever possible, but it wakes up to active mode according to any required activity related to the network (e.g. for the periodic paging reception...
described in section 1.5.1.5, or for any other required RF signal transmission or reception) or any other required activity related to the functions / interfaces of the module.

The AT+UPSV=3 configuration can be enabled regardless of the flow control setting on the UART. In particular, the HW flow control can be enabled (AT&K3) or disabled (AT&K0) on the UART during this configuration. In both cases, with the AT+UPSV=3 configuration, the CTS line indicates when the module is either able or not able to accept data from the DTE over the UART.

When the AT+UPSV=3 configuration is enabled, the DTR input line can still be used by the DTE to control the module behavior according to the AT&D command configuration (see the u-blox AT commands manual [2]).

Wake-up via data reception

The UART wake-up via data reception consists of a special configuration of the module TXD input line that causes the system wake-up when a low-to-high transition occurs on the TXD input line. In particular, the UART is enabled and the module switches from the low power idle mode to active mode within ~20 ms from the first character received: this is the system “wake-up time”.

As a consequence, the first character sent by the DTE when the UART is disabled (i.e. the wake up character) is not a valid communication character, even if the wake up via data reception configuration is active, because it cannot be recognized, and the recognition of the subsequent characters is guaranteed only after the complete system wake-up (i.e. after ~20 ms).

The UART wake-up via data reception configuration is active in the following cases:

- AT+UPSV=1 is set with HW flow control disabled
- AT+UPSV=1 power saving configuration is active and the timeout from last data received to idle mode start is set to 2000 frames (AT+UPSV=1,2000)
- Hardware flow control is disabled

Figure 22 and Figure 23 show examples of common scenarios and timing constraints:

- AT+UPSV=1 power saving configuration is active and the timeout from last data received to idle mode start is set to 2000 frames (AT+UPSV=1,2000)
- Hardware flow control is disabled

Figure 22 shows the case where the UART module is disabled and only a wake-up is forced. In this scenario, the only character sent by the DTE is the wake-up character; as a consequence, the DCE module UART is disabled when the timeout from last data received expires (2000 frames without data reception, as the default case).

Figure 22: Wake-up via data reception without further communication

Figure 23 shows the case where in addition to the wake-up character, further (valid) characters are sent. The wake-up character wakes up the UART module. The other characters must be sent after the “wake up time” of ~20 ms. If this condition is satisfied, the module (DCE) recognizes characters. The module will disable the UART after 2000 GSM frames from the latest data reception.
The “wake-up via data reception” feature cannot be disabled.

In command mode\(^\text{14}\), with “wake-up via data reception” enabled and autobauding enabled, the DTE should always send a dummy character to the module before the “AT” prefix set at the beginning of each command line: the first dummy character is ignored if the module is in active mode, or it represents the wake-up character if the module is in low power idle mode.

In command mode\(^\text{14}\), with “wake-up via data reception” enabled and autobauding disabled, the DTE should always send a dummy “AT” to the module before each command line: the first dummy “AT” is not ignored if the module is in active mode (i.e. the module replies “OK”), or it represents the wake-up character if the module is in low power idle mode (i.e. the module does not reply).

Additional considerations

If the USB is connected and not suspended, the module is kept ready to communicate over USB regardless of the AT+UPSV settings, which have effect instead on the UART behavior, as they configure the UART power saving, so that UART is enabled / disabled according to the AT+UPSV settings.

To set the AT+UPSV=1, AT+UPSV=2 or AT+UPSV=3 configuration over the USB interface, the autobauding must be previously disabled on the UART by the +IPR AT command over the used USB AT interface, and this +IPR AT command configuration must be saved in the module’s non-volatile memory (see the u-blox AT commands manual\(^\text{[2]}\)). Then after the subsequent module re-boot, AT+UPSV=1, AT+UPSV=2 or AT+UPSV=3 can be issued over the used AT interface (the USB): all the AT profiles are updated accordingly.

1.9.1.5 Multiplexer protocol (3GPP TS 27.010)

LARA-R2 series modules include multiplexer functionality on the UART physical link as per 3GPP TS 27.010\(^\text{[8]}\).

This is a data link protocol which uses HDLC-like framing and operates between the module (DCE) and the application processor (DTE) and allows a number of simultaneous sessions over the used physical link (UART): the user can concurrently use AT interface on one MUX channel and data communication on another MUX channel.

These virtual channels are defined (for more details, see Mux implementation application note\(^\text{[21]}\)):

- Channel 0: Multiplexer control
- Channels 1 – 5: AT commands / data connection
- Channel 6: GNSS data tunneling

\(^{14}\) See the u-blox AT commands manual\(^\text{[2]}\) for the definition of the command mode, data mode, and online command mode.
GNSS data tunneling is not supported by LARA-R204-02B and LARA-R211-02B-00 product versions.

1.9.2 USB interface

1.9.2.1 USB features

LARA-R2 series modules include a High-Speed USB 2.0 compliant interface with a 480 Mbit/s maximum data rate, representing the main interface for transferring high speed data with a host application processor, supporting:

- AT command mode
- Data mode and Online command mode
- FW upgrades by means of the FOAT feature (see 1.14.14 and the FW update application note [23])
- FW upgrades by means of the u-blox EasyFlash tool (see the FW update application note [23])
- Trace log capture (diagnostic purposes)

The module itself acts as a USB device and can be connected to a USB host such as a Personal Computer or an embedded application microprocessor equipped with compatible drivers.

The USB_D+/USB_D- lines carry USB serial bus data and signaling according to the Universal Serial Bus Revision 2.0 specification [9], while the VUSB_DET input pin senses the VBUS USB supply presence (nominally 5 V at the source) to detect the host connection and enable the interface.

The USB interface of the module is enabled only if a valid voltage is detected by the VUSB_DET input (see the LARA-R2 series data sheet [1]). Neither the USB interface, nor the whole module is supplied by the VUSB_DET input: the VUSB_DET senses the USB supply voltage and absorbs only a few microamperes.

The USB interface is controlled and operated with:

- AT commands according to 3GPP TS 27.007 [6], 3GPP TS 27.005 [7]
- u-blox AT commands (for the complete list and syntax, see the u-blox AT commands manual [2])

The USB interface of LARA-R2 series modules, according to the configured USB profile, can provide several USB functions with various capabilities and purposes, such as:

- CDC-ACM for AT commands and data communication
- CDC-ACM for GNSS tunneling
- CDC-ACM for SAP (SIM Access Profile)
- CDC-ACM for Diagnostic logs
- CDC-NCM for Ethernet-over-USB

CDC-ACM for GNSS tunneling is not supported by the LARA-R204-02B and LARA-R211-02B-00 product versions.

CDC-ACM for SAP and CDC-NCM for Ethernet-over-USB are not supported by the "02", "62" and "82" versions.

The RI virtual signal is not supported over USB CDC-ACM by the "02", "62", "82" product versions.

The USB profile of LARA-R2 series modules identifies itself by its VID (Vendor ID) and PID (Product ID) combination, included in the USB device descriptor according to the USB 2.0 specification [9].

If the USB is connected to the host before the module is switched on, or if the module is reset (rebooted) with the USB connected to the host, the VID and PID are automatically updated during the boot of the module. First, VID and PID are the following:

See the u-blox AT commands manual [2] for the definition of the command mode, data mode, and online command mode.
- VID = 0x8087
- PID = 0x0716

This VID and PID combination identifies a USB profile where no USB function described above is available: AT commands must not be sent to the module over the USB profile identified by this VID and PID combination.

Then, after a time period (which depends on the host / device enumeration timings), the VID and PID are updated to the ones related to the default USB profile providing the following set of USB functions:

- 6 CDC-ACM modem COM ports enumerated as follows:
 - USB1: AT and data
 - USB2: AT and data
 - USB3: AT and data
 - USB4: GNSS tunneling
 - USB5: SAP (SIM Access Profile)
 - USB6: Primary Log (diagnostic purpose)

VID and PID of this USB profile with the set of functions described above (6 CDC-ACM) are:

- VID = 0x1546
- PID = 0x110A

Figure 24 summarizes the USB endpoints available with the default USB profile.

![Default profile configuration](image)

Figure 24: LARA-R2 series USB Endpoints summary for the default USB profile configuration
1.9.2.2 USB in Windows

USB drivers are provided for Windows operating system platforms and should be properly installed/enabled by following the step-by-step instructions available in the EVK-R2xx user guide [3] or in the Windows Embedded OS USB driver installation application note [4].

USB drivers are available for the following operating system platforms:

- Windows 7
- Windows 8
- Windows 8.1
- Windows 10
- Windows Embedded CE 6.0
- Windows Embedded Compact 7
- Windows Embedded Compact 2013
- Windows 10 IoT

The module firmware can be upgraded over the USB interface by means of the FOAT feature, or using the u-blox EasyFlash tool (for more details, see the FW update application note [23]).

1.9.2.3 USB in Linux/Android

It is not required to install a specific driver for each Linux-based or Android-based operating system (OS) to use the USB module interface, which is compatible with standard Linux/Android USB kernel drivers.

The full capability and configuration of the USB module interface can be reported by running “lsusb -v” or an equivalent command available in the host operating system when the module is connected.

1.9.2.4 USB and power saving

The modules automatically enter the USB suspended state when the device has observed no bus traffic for a specific time period according to the USB 2.0 specifications [9]. In the suspended state, the module maintains any USB internal status as device. In addition, the module enters the suspended state when the hub port it is attached to is disabled. This is referred to as a USB selective suspend.

If the USB is suspended and a power saving configuration is enabled by the AT+UPSV command, the module automatically enters the low power idle mode whenever possible, but it wakes up to active mode according to any required activity related to the network (e.g. the periodic paging reception described in section 1.5.1.5) or any other required activity related to the functions/interfaces of the module.

The USB exits suspend mode when there is bus activity. If the USB is connected and not suspended, the module is kept ready to communicate over USB regardless of the AT+UPSV settings, therefore the AT+UPSV settings are overruled but they do have effect on the power saving configuration of the other interfaces (see 1.9.1.4).

The modules are capable of USB remote wake-up signaling: i.e. it may request the host to exit suspend mode or selective suspend by using electrical signaling to indicate remote wake-up, for example due to an incoming call, URCs, data reception on a socket. The remote wake-up signaling notifies the host that it should resume from its suspended mode, if necessary, and service the external event. Remote wake-up is accomplished using electrical signaling described in the USB 2.0 specifications [9].

For the module current consumption description with power saving enabled and USB suspended, or with power saving disabled and USB not suspended, see sections 1.5.1.5, 1.5.1.6 and the LARA-R2 series data sheet [1].

The additional VUSB_DET input pin available on the LARA-R2 series modules provides the complete bus detach functionality: the modules disable the USB interface when a low logic level is sensed after...
a high-to-low logic level transition on the VUSB_DET input pin. This allows a further reduction of the module current consumption, in particular as compared to the USB suspended status during low-power idle mode with power saving enabled.

1.9.3 HSIC interface

☞ The HSIC interface is not supported by the “02”, “62” and “82” product versions except for diagnostic purposes.

1.9.3.1 HSIC features

LARA-R2 series modules include a USB High-Speed Inter-Chip compliant interface with a maximum 480 Mb/s data rate according to the High-Speed Inter-Chip USB Electrical Specification Version 1.0 [10] and the USB Specification Revision 2.0 [9]. The module itself acts as a device and can be connected to any compatible host.

The HSIC interface provides:

- AT command mode
- Data mode and Online command mode
- FW upgrades by means of the FOAT feature (see 1.14.14 and the FW update application note [23])
- FW upgrades by means of the u-blox EasyFlash tool (see the FW update application note [23])
- Trace log capture (diagnostic purpose)

The HSIC interface consists of a bi-directional DDR data line (HSIC_DATA) for transmitting and receiving data synchronously with the bi-directional strobe line (HSIC_STRB).

The modules also include the HOST_SELECT pin to select the module / host application processor configuration: the pin is available to select, enable, connect, disconnect and subsequently re-connect the HSIC interface.

The USB interface is controlled and operated with:

- AT commands according to 3GPP TS 27.007 [6], 3GPP TS 27.005 [7]
- u-blox AT commands (for the complete list and syntax, see the u-blox AT commands manual [2])

1.9.4 DDC (I2C) interface

☞ Communication with u-blox GNSS receivers over the I2C bus compatible Display Data Channel interface, AssistNow embedded GNSS positioning aiding, CellLocate® positioning through cellular info, and custom functions over GPIOs for the integration with u-blox positioning chips / modules are not supported by the LARA-R204-02B and LARA-R211-02B-00 product versions.

The SDA and SCL pins represent an I2C bus compatible Display Data Channel (DDC) interface available for

- communication with u-blox GNSS chips / modules,
- communication with other external I2C devices as audio codecs.

The AT command interface is not available on the DDC (I2C) interface.

DDC (I2C) slave-mode operation is not supported: the LARA-R2 series module can act as the I2C master that can communicate with more I2C slaves in accordance to the I2C bus specifications [11].

See the u-blox AT commands manual [2] for the definition of the command mode, data mode, and online command mode.
The DDC (I2C) interface pins of the module, serial data (SDA) and serial clock (SCL), are open drain outputs conforming to the I2C bus specifications [11].

u-blox has implemented special features to ease the design effort required for the integration of a u-blox cellular module with a u-blox GNSS receiver.

Combining a u-blox cellular module with a u-blox GNSS receiver allows designers to have full access to the positioning receiver directly via the cellular module: it relays control messages to the GNSS receiver via a dedicated DDC (I2C) interface. A second interface connected to the positioning receiver is not necessary: AT commands via the UART or USB serial interface of the cellular module allow for full control of the GNSS receiver from any host processor.

The modules feature embedded GNSS aiding, that is, a set of specific features developed by u-blox to enhance GNSS performance, decreasing the Time-To-First-Fix (TTFF), thus allowing the calculation of the position in a shorter time with higher accuracy.

These GNSS aiding types are available:

- Local aiding
- AssistNow Online
- AssistNow Offline
- AssistNow Autonomous

The embedded GNSS aiding features can be used only if the DDC (I2C) interface of the cellular module is connected to the u-blox GNSS receivers.

The cellular modules provide additional custom functions over GPIO pins to improve the integration with u-blox positioning chips and modules. GPIO pins can handle:

- GNSS receiver power-on/off: the “GNSS supply enable” function provided by GPIO2 improves the positioning receiver power consumption. When the GNSS functionality is not required, the positioning receiver can be completely switched off by the cellular module that is controlled by AT commands.
- The wake-up from idle mode when the GNSS receiver is ready to send data: “GNSS Tx data ready” function provided by GPIO3 improves the cellular module power consumption. When power saving is enabled in the cellular module by the AT+UPSV command and the GNSS receiver does not send data by the DDC (I2C) interface, the module automatically enters idle mode whenever possible. With the “GNSS Tx data ready” function, the GNSS receiver can indicate to the cellular module that it is ready to send data by the DDC (I2C) interface: the positioning receiver can wake up the cellular module if it is in idle mode, so the cellular module does not lose the data sent by the GNSS receiver even if power saving is enabled.
- The RTC synchronization signal to the GNSS receiver: “GNSS RTC sharing” function provided by GPIO4 improves GNSS receiver performance, decreasing the Time-To-First-Fix (TTFF), and thus allowing the calculation of the position in a shorter time with higher accuracy. When GPS local aiding is enabled, the cellular module automatically uploads data such as position, time, ephemeris, almanac, health and ionospheric parameters from the positioning receiver into its local memory, and restores this to the GNSS receiver at the next power-up of the positioning receiver.

The “GNSS RTC sharing” function is not supported by the “02” and “62” product versions.

For more details regarding the handling of the DDC (I2C) interface, the GNSS aiding features and the GNSS related functions over GPIOs, see section 1.12, the u-blox AT commands manual [2] (+UGPS, +UGPRF, +UGPIOC AT commands) and the GNSS implementation application note [22].

“GNSS Tx data ready” and “GNSS RTC sharing” functions are not supported by all u-blox GNSS receivers HW or ROM/FW versions. See the GNSS implementation application note [22] or the Hardware Integration Manual of the u-blox GNSS receivers for the supported features.
As an additional improvement for the GNSS receiver performance, the \(V_{BCKP} \) supply output of the cellular modules can be connected to the \(V_{BCKP} \) supply input pin of u-blox positioning chips and modules to provide the supply for the GNSS real time clock and backup RAM when the \(VCC \) supply of the cellular module is within its operating range and the \(VCC \) supply of the GNSS receiver is disabled. This enables the u-blox positioning receiver to recover from a power breakdown with either a hot start or a warm start (depending on the duration of the GNSS receiver \(VCC \) outage) and to maintain the configuration settings saved in the backup RAM.

1.9.5 SDIO interface

☞ The Secure Digital Input Output interface is not supported by the "02", "62" and "82" product versions.

LARA-R2 series modules include a 4-bit Secure Digital Input Output interface (SDIO_D0, SDIO_D1, SDIO_D2, SDIO_D3, SDIO_CLK, SDIO_CMD) designed to communicate with an external u-blox short range Wi-Fi module: the cellular module acts as an SDIO host controller which can communicate over the SDIO bus with a compatible u-blox short range radio communication Wi-Fi module acting as an SDIO device.

The SDIO interface is the only interface of LARA-R2 series modules dedicated for communication between the u-blox cellular module and the u-blox short range Wi-Fi module.

The AT command interface is not available on the SDIO interface of the LARA-R2 series modules.

Combining a u-blox cellular module with a u-blox short range communication module gives designers full access to the Wi-Fi module directly via the cellular module, so that a second interface connected to the Wi-Fi module is not necessary. AT commands via the AT interfaces of the cellular module allow for full control of the Wi-Fi module from any host processor, because Wi-Fi control messages are relayed to the Wi-Fi module via the dedicated SDIO interface.

u-blox has implemented special features in the cellular modules to ease the design effort for the integration of a u-blox cellular module with a u-blox short range Wi-Fi module to provide router functionality.

Additional custom function over GPIO pins is designed to improve the integration with u-blox Wi-Fi modules:

- Wi-Fi enable Switch-on / switch-off the Wi-Fi

☞ Wi-Fi enable function over GPIO is not supported by the "02", "62" and "82" product versions.
1.10 Audio interface

Audio is not supported by the LARA-R204-02B and LARA-R220-62B versions.

1.10.1 Digital audio interface

LARA-R2 series modules include a 4-wire I2S digital audio interface (I2S_TXD data output, I2S_RXD data input, I2S_CLK clock input/output, I2S_WA world alignment / synchronization signal input/output), which can be configured by AT commands for digital audio communication with external digital audio devices as an audio codec (for more details, see the u-blox AT commands manual [2], +UI2S AT command).

The I2S interface can be alternatively set in different modes by the <I2S_mode> parameter of the AT+UI2S command:

- PCM mode (short synchronization signal): I2S word alignment signal is set high for 1 or 2 clock cycles for the synchronization, and then is set low for 16 clock cycles according to the 17 or 18 clock cycle frame length.
- Normal I2S mode (long synchronization signal): the I2S word alignment is set high / low with a 50% duty cycle (high for 16 clock cycles / low for 16 clock cycles, according to the 32 clock cycle frame length).

The I2S interface can be alternatively set in different roles by the <I2S_Master_Slave> parameter of AT+UI2S:

- Master mode
- Slave mode

The sample rate of transmitted/received words, which corresponds to the I2S word alignment / synchronization signal frequency, can be alternatively set by the <I2S_sample_rate> parameter of AT+UI2S to:

- 8 kHz
- 11.025 kHz
- 12 kHz
- 16 kHz
- 22.05 kHz
- 24 kHz
- 32 kHz
- 44.1 kHz
- 48 kHz

The modules support I2S transmit and I2S receive data 16-bit words long, linear, mono (or also dual mono in Normal I2S mode). Data is transmitted and read in 2's complement notation. MSB is transmitted and read first.

I2S clock signal frequency depends on the frame length, the sample rate and the selected mode of operation:

- 17 x <I2S_sample_rate> or 18 x <I2S_sample_rate> in PCM mode (short synchronization signal)
- 16 x 2 x <I2S_sample_rate> in normal I2S mode (long synchronization signal)

For the complete description of the possible configurations and settings of the I2S digital audio interface for PCM and Normal I2S modes, refer to the u-blox AT commands manual [2], +UI2S AT command.
1.11 Clock output

LARA-R2 series modules provide the master digital clock output function on the GPIO6 pin, which can be configured to provide a 13 MHz or 26 MHz square wave. This is mainly designed to feed the master clock input of an external audio codec, as the clock output can be configured in “Audio dependent” mode (generating the square wave only when the audio path is active), or in “Continuous” mode. For more details, see the u-blox AT commands manual [2], +UMCLK AT command.

1.12 General Purpose Input/Output (GPIO)

LARA-R2 series modules include 9 pins (GPIO1-GPIO5, I2S_TXD, I2S_RXD, I2S_CLK, I2S_WA) which can be configured as General Purpose Input/Output or to provide custom functions via u-blox AT commands (for more details, see the u-blox AT commands manual [2], +UGPIOC, +UGPIOR, +UGPIOW AT commands), as summarized in Table 12.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Default GPIO</th>
<th>Configurable GPIOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network status indication</td>
<td>Network status: registered home network, registered roaming, data transmission, no service</td>
<td>--</td>
<td>GPIO1-GPIO4</td>
</tr>
<tr>
<td>GNSS supply enable17</td>
<td>Enable/disable the supply of u-blox GNSS receiver connected to the cellular module</td>
<td>GPIO2</td>
<td>GPIO1-GPIO4</td>
</tr>
<tr>
<td>GNSS data ready17</td>
<td>Sense when u-blox GNSS receiver connected to the module is ready for sending data by the DDC (I2C)</td>
<td>GPIO3</td>
<td>GPIO3</td>
</tr>
<tr>
<td>GNSS RTC sharing18</td>
<td>RTC synchronization signal to the u-blox GNSS receiver connected to the cellular module</td>
<td>--</td>
<td>GPIO4</td>
</tr>
<tr>
<td>SIM card detection</td>
<td>External SIM card physical presence detection</td>
<td>GPIO5</td>
<td>GPIO5</td>
</tr>
<tr>
<td>SIM card hot insertion/removal</td>
<td>Enable / disable SIM interface upon detection of external SIM card physical insertion / removal</td>
<td>--</td>
<td>GPIO5</td>
</tr>
<tr>
<td>I2S digital audio interface</td>
<td>I2S digital audio interface</td>
<td>I2S_RXD, I2S_TXD, I2S_CLK, I2S_WA</td>
<td>I2S_RXD, I2S_TXD, I2S_CLK, I2S_WA</td>
</tr>
<tr>
<td>Wi-Fi control18</td>
<td>Control of an external Wi-Fi chip or module</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>General purpose input</td>
<td>Input to sense high or low digital level</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>General purpose output</td>
<td>Output to set the high or the low digital level</td>
<td>GPIO4</td>
<td>All</td>
</tr>
<tr>
<td>Pin disabled</td>
<td>Tri-state with an internal active pull-down enabled</td>
<td>GPIO1</td>
<td>All</td>
</tr>
</tbody>
</table>

Table 12: LARA-R2 series GPIO custom functions configuration

1.13 Reserved pins (RSVD)

LARA-R2 series modules have pins reserved for future use, named RSVD: they can all be left unconnected on the application board, except

- the RSVD pin number 33 that must be externally connected to ground

17 Not supported by the LARA-R204-02B and LARA-R211-02B-00 product versions: GPIO2 and GPIO3 pins are by default disabled
18 Not supported by the “02”, “62” and “82” product versions
1.14 System features

1.14.1 Network indication

GPIOs can be configured by the AT command to indicate network status (for further details, see section 1.12 and the u-blox AT commands manual [2], GPIO commands):

- No service (no network coverage or not registered)
- Registered 2G / 3G / LTE home network
- Registered 2G / 3G / LTE visitor network (roaming)
- Call enabled (RF data transmission / reception)

1.14.2 Antenna detection

The antenna detection function provided by the ANT_DET pin is based on an ADC measurement as an optional feature that can be implemented if the application requires it. The antenna supervisor is forced by the +UANTR AT command (see the u-blox AT commands manual [2] for more details).

The requirements to achieve antenna detection functionality are the following:

- an RF antenna assembly with a built-in resistor (diagnostic circuit) must be used
- an antenna detection circuit must be implemented on the application board

See section 1.7.2 for detailed antenna detection interface functional description and see section 2.4.2 for detection circuit on the application board and diagnostic circuit on antenna assembly design-in guidelines.

1.14.3 Jamming detection

Congestion detection (i.e. jamming detection) is not supported by the "02", "62" and "82" product versions.

In real network situations, modules can experience various kind of out-of-coverage conditions: limited service conditions when roaming to networks not supporting the specific SIM, limited service in cells which are not suitable or barred due to operators' choices, or no cell condition when moving to poorly served or highly interfered areas. In the latter case, interference can be artificially injected in the environment by a noise generator covering a given spectrum, thus obscuring the operator's carriers entitled to give access to the LTE/3G/2G service.

The congestion (i.e. jamming) detection feature can be enabled and configured by the +UCD AT command: the feature consists of detecting an anomalous source of interference and signaling the start and stop of such conditions to the host application processor with an unsolicited indication, which can react appropriately by e.g. switching off the radio transceiver of the module (i.e. configuring the module in “airplane mode” by means of the +CFUN AT command) in order to reduce power consumption and monitoring the environment at constant periods (for more details, see the u-blox AT commands manual [2], +UCD AT command).

1.14.4 Dual stack IPv4/IPv6

LARA-R2 series support both Internet Protocol version 4 and Internet Protocol version 6 in parallel.

For more details about dual stack IPv4/IPv6, see the u-blox AT commands manual [2].

1.14.5 PPP

LARA-R2 series support a Point-to-Point Protocol in order to establish a connection with the external application via a serial interface (UART, MUX, or CDC-ACM): IPv4/IPv6 packets are relayed through the cellular protocol stack with the external application.
1.14.6 TCP/IP and UDP/IP

LARA-R2 series modules provide an embedded TCP/IP and UDP/IP protocol stack: a PDP context can be configured, established and handled via the data connection management packet switched data commands.

LARA-R2 series modules provide a Direct Link mode to establish a transparent end-to-end communication with an already connected TCP or UDP socket via serial interfaces. In Direct Link mode, data sent to the serial interface from an external application processor is forwarded to the network and vice-versa.

For more details about embedded TCP/IP and UDP/IP functionalities, see the u-blox AT commands manual [2].

1.14.7 FTP

LARA-R2 series provide embedded File Transfer Protocol (FTP) services. Files are read and stored in the local file system of the module.

FTP files can also be transferred using FTP Direct Link:

- **FTP download**: data coming from the FTP server is forwarded to the host processor via serial interfaces (for FTP without Direct Link mode the data is always stored in the module’s Flash File System)
- **FTP upload**: data coming from the host processor via serial interfaces is forwarded to the FTP server (for FTP without Direct Link mode the data is read from the module’s Flash File System)

When Direct Link is used for a FTP file transfer, only the file content pass through USB / UART serial interface, whereas all the FTP commands handling is managed internally by the FTP application.

For more details about embedded FTP functionalities, see the u-blox AT commands manual [2].

1.14.8 HTTP

LARA-R2 series modules provide the embedded Hyper-Text Transfer Protocol (HTTP) services via AT commands for sending requests to a remote HTTP server, receiving the server response and transparently storing it in the module’s Flash File System (FFS).

For more details about embedded HTTP functionalities, see the u-blox AT commands manual [2].

1.14.9 SSL/TLS

LARA-R2 series modules support the Secure Sockets Layer (SSL) / Transport Layer Security (TLS) with certificate key sizes up to 4096 bits to provide security over the FTP and HTTP protocols.

The SSL/TLS support provides different connection security aspects:

- Server authentication: use of the server certificate verification against a specific trusted certificate or a trusted certificates list
- Client authentication: use of the client certificate and the corresponding private key
- Data security and integrity: data encryption and Hash Message Authentication Code (HMAC) generation

The security aspects used during a connection depend on the SSL/TLS configuration and features supported.

Table 13 contains the settings of the default SSL/TLS profile and *Table 14 to Table 18* report the main SSL/TLS supported capabilities of the products. For a complete list of supported configurations and settings, see the u-blox AT commands manual [2].
<table>
<thead>
<tr>
<th>Settings</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificates validation level</td>
<td>Level 0</td>
<td>The server certificate will not be checked or verified</td>
</tr>
<tr>
<td>Minimum SSL/TLS version</td>
<td>Any</td>
<td>The server can use any of the TLS1.0/TLS1.1/TLS1.2 versions for the connection</td>
</tr>
<tr>
<td>Cipher suite</td>
<td>Automatic</td>
<td>The cipher suite will be negotiated in the handshake process</td>
</tr>
<tr>
<td>Trusted root certificate internal name</td>
<td>None</td>
<td>No certificate will be used for the server authentication</td>
</tr>
<tr>
<td>Expected server host-name</td>
<td>None</td>
<td>No server host-name is expected</td>
</tr>
<tr>
<td>Client certificate internal name</td>
<td>None</td>
<td>No client certificate will be used</td>
</tr>
<tr>
<td>Client private key internal name</td>
<td>None</td>
<td>No client private key will be used</td>
</tr>
<tr>
<td>Client private key password</td>
<td>None</td>
<td>No client private key password will be used</td>
</tr>
<tr>
<td>Pre-shared key</td>
<td>None</td>
<td>No pre-shared key password will be used</td>
</tr>
</tbody>
</table>

Table 13: Default SSL/TLS profile

<table>
<thead>
<tr>
<th>SSL/TLS Version</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL 2.0</td>
<td>NO</td>
</tr>
<tr>
<td>SSL 3.0</td>
<td>YES</td>
</tr>
<tr>
<td>TLS 1.0</td>
<td>YES</td>
</tr>
<tr>
<td>TLS 1.1</td>
<td>YES</td>
</tr>
<tr>
<td>TLS 1.2</td>
<td>YES</td>
</tr>
</tbody>
</table>

Table 14: SSL/TLS version support

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>YES</td>
</tr>
<tr>
<td>PSK</td>
<td>YES</td>
</tr>
</tbody>
</table>

Table 15: Authentication

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC4</td>
<td>NO</td>
</tr>
<tr>
<td>DES</td>
<td>YES</td>
</tr>
<tr>
<td>3DES</td>
<td>YES</td>
</tr>
<tr>
<td>AES128</td>
<td>YES</td>
</tr>
<tr>
<td>AES256</td>
<td>YES</td>
</tr>
</tbody>
</table>

Table 16: Encryption

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>NO</td>
</tr>
<tr>
<td>SHA/SHA1</td>
<td>YES</td>
</tr>
<tr>
<td>SHA256</td>
<td>YES</td>
</tr>
<tr>
<td>SHA384</td>
<td>YES</td>
</tr>
</tbody>
</table>

Table 17: Message digest
1.14.10 Bearer Independent Protocol

The Bearer Independent Protocol (BIP) is a mechanism by which a cellular module provides a SIM with access to the data bearers supported by the network. With the BIP for Over-the-Air SIM provisioning, the data transfer from and to the SIM uses either an already active PDP context or a new PDP context established with the APN provided by the SIM card. For more details, see the u-blox AT commands manual [2].

1.14.11 AssistNow clients and GNSS integration

AssistNow clients and u-blox GNSS receiver integration are not supported by the LARA-R204-02B and LARA-R211-02B-00 product versions.

For customers using u-blox GNSS receivers, the LARA-R2 series cellular modules feature embedded AssistNow clients. AssistNow A-GPS provides better GNSS performance and faster Time-To-First-Fix. The clients can be enabled and disabled with an AT command (see the u-blox AT commands manual [2]).

LARA-R2 series cellular modules act as a stand-alone AssistNow client, making AssistNow available with no additional requirements for resources or software integration on an external host micro controller. Full access to u-blox positioning receivers is available via the cellular modules, through a dedicated DDC (I2C) interface, while the available GPIOs can handle the positioning chipset / module power-on/off. This means that the cellular module and the GNSS receiver can be controlled through a single serial port from any host processor.
1.14.12 Hybrid positioning and CellLocate®

Hybrid positioning and CellLocate® are not supported by LARA-R204-02B and LARA-R211-02B-00 product versions.

Although GNSS is a widespread technology, its reliance on the visibility of extremely weak GNSS satellite signals means that positioning is not always possible. Especially difficult environments for GNSS are indoors, in enclosed or underground parking garages, as well as in urban canyons where GNSS signals are blocked or jammed by multipath interference. The situation can be improved by augmenting GNSS receiver data with cellular network information to provide positioning information even when GNSS reception is degraded or absent. This additional information can benefit numerous applications.

Positioning through cellular information: CellLocate®

u-blox CellLocate® enables the device position estimation based on the parameters of the mobile network cells visible to the specific device. To estimate its position, the u-blox cellular module sends the CellLocate® server the parameters of network cells visible to it using a UDP connection. In return, the server provides the estimated position based on the CellLocate® database. The module can either send the parameters of the visible home network cells only (normal scan) or the parameters of all surrounding cells of all mobile operators (deep scan).

The deep scan is not supported by the "02" product versions.

The CellLocate® database is compiled from the position of devices which observed, in the past, a specific cell or set of cells (historical observations) as follows:

1. Several devices reported their position to the CellLocate® server when observing a specific cell (the As in the picture represent the position of the devices which observed the same cell A)

2. CellLocate® server defines the area of Cell A visibility
3. If a new device reports the observation of Cell A, CellLocate® is able to provide the estimated position from the area of visibility.

4. The visibility of multiple cells provides increased accuracy based on the intersection of areas of visibility.

CellLocate® is implemented using a set of two AT commands that allow configuration of the CellLocate® service (AT+ULOCCELL) and requesting position according to the user configuration (AT+ULOC). The answer is provided in the form of an unsolicited AT command including latitude, longitude and estimated accuracy.

☞ The accuracy of the position estimated by CellLocate® depends on the availability of historical observations in the specific area.

Hybrid positioning

With u-blox hybrid positioning technology, u-blox cellular modules can be triggered to provide their current position using either a u-blox GNSS receiver or the position estimated from CellLocate®. The choice depends on which positioning method provides the best and fastest solution according to the user configuration, exploiting the benefit of having multiple and complementary positioning methods.

Hybrid positioning is implemented through a set of three AT commands that allow GNSS receiver configuration (AT+ULOCGNSS), CellLocate® service configuration (AT+ULOCCELL), and requesting the position according to the user configuration (AT+ULOC). The answer is provided in the form of an unsolicited AT command including latitude, longitude and estimated accuracy (if the position has been estimated by CellLocate®), and additional parameters if the position has been computed by the GNSS receiver.

The configuration of mobile network cells does not remain static (e.g. new cells are continuously added or existing cells are reconfigured by the network operators). For this reason, when a hybrid positioning method has been triggered and the GNSS receiver calculates the position, a database self-
learning mechanism has been implemented so that these positions are sent to the server to update the database and maintain its accuracy.

The use of hybrid positioning requires a connection via the DDC (I2C) bus between the cellular modules and the u-blox GNSS receiver (see section 2.6.4).

See the GNSS implementation application note [22] for a complete description of the feature.

☞ u-blox is extremely mindful of user privacy. When a position is sent to the CellLocate® server, u-blox is unable to track the SIM used or the specific device.

1.14.13 Wi-Fi integration

Integration of u-blox short range communication Wi-Fi modules is not supported by the "02", "62" and "82" product versions.

Full access to u-blox short range communication Wi-Fi modules is available through a dedicated SDIO interface (see sections 1.9.5 and 2.6.5). This means that combining a LARA-R2 series cellular module with a u-blox short range communication module gives designers full access to the Wi-Fi module directly via the cellular module, so that a second interface connected to the Wi-Fi module is not necessary.

AT commands via the AT interfaces of the cellular module (UART, USB) allows a full control of the Wi-Fi module from any host processor, because Wi-Fi control messages are relayed to the Wi-Fi module via the dedicated SDIO interface.

All the management software for Wi-Fi module operations runs inside the cellular module in addition to those required for cellular-only operation.

1.14.14 Firmware upgrade Over AT (FOAT)

This feature allows upgrading the module firmware over the USB / UART serial interfaces, using AT commands.

- The +UFWUPD AT command triggers a reboot followed by the upgrade procedure at a specified baud rate.
- A special boot loader on the module performs firmware installation, security verifications and module reboot.
- Firmware authenticity verification is performed via a security signature during the download. The firmware is then installed, overwriting the current version. In the event of a power loss during this phase, the boot loader detects a fault at the next wake-up, and restarts the firmware download. After completing the upgrade, the module is reset again and wakes-up in normal boot.

For more details about the Firmware update Over AT procedure, see the FW update application note [23] and the u-blox AT commands manual [2], +UFWUPD AT command.

1.14.15 Firmware update Over The Air (FOTA)

This feature allows upgrading the module firmware over the LTE/3G/2G air interface.

In order to reduce the amount of data to be transmitted over the air, the implemented FOTA feature requires downloading only a "delta file" instead of the full firmware. The delta file contains only the differences between the two firmware versions (old and new), and is compressed. The firmware
update procedure can be triggered using a dedicated AT command with the delta file stored in the module file system via over the air FTP.

For more details about the Firmware update Over The Air procedure, see the Firmware update application note [23] and the u-blox AT commands manual [2], +UFWINSTALL AT command.

1.14.16 Smart temperature management

Cellular modules – independently from the specific model – always have a well-defined operating temperature range. This range should be respected to guarantee full device functionality and long life span.

Nevertheless, there are environmental conditions that can affect the operating temperature, e.g. if the device is located near a heating/cooling source, if there is/is not air circulating, etc.

The module itself can also influence the environmental conditions; such as when it is transmitting at full power. In this case, its temperature increases very quickly and can raise the temperature nearby.

The best solution is always to properly design the system where the module is integrated. Nevertheless an extra check/security mechanism embedded into the module is a good solution to prevent operation of the device outside of the specified range.

Smart Temperature Supervisor (STS)

The Smart Temperature Supervisor is activated and configured by a dedicated AT+USTS command. See the u-blox AT commands manual [2] for more details. An URC indication is provided once the feature is enabled and at the module power-on.

The cellular module measures the internal temperature (Ti) and its value is compared with predefined thresholds to identify the actual working temperature range.

Temperature measurement is done inside the module: the measured value could be different from the environmental temperature (Ta).

![Valid temperature range](image)

<table>
<thead>
<tr>
<th>Dangerous area</th>
<th>Warning area</th>
<th>Safe area</th>
<th>Warning area</th>
<th>Dangerous area</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₂</td>
<td>t₁</td>
<td>t₃</td>
<td>t₄</td>
<td>t₅</td>
</tr>
</tbody>
</table>

Figure 25: Temperature range and limits

The entire temperature range is divided into sub-regions by limits (see Figure 25) named t₂, t₁, t₃ and t₄.

- Within the first limit, (t₁ < Ti < t₃), the cellular module is in the normal working range, the Safe Area.
- In the Warning Area, (t₂ < Ti < t₃) or (t₃ < Ti < t₄), the cellular module is still inside the valid temperature range, but the measured temperature is approaching the limit (upper or lower). The module sends a warning to the user (through the active AT communication interface), who can take, if possible, the necessary actions to return to a safer temperature range or simply ignore the indication. The module is still in a valid and good working condition.
- Outside the valid temperature range, (Ti < t₂) or (Ti > t₄), the device is working outside the specified range and represents a dangerous working condition. This condition is indicated and the device shuts down to avoid damage.
For security reasons, the shutdown is suspended whenever an emergency call is in progress. In this case, the device switches off upon call termination.

The user can decide at anytime to enable/disable the Smart Temperature Supervisor feature. If the feature is disabled, there is no embedded protection against disallowed temperature conditions.

Figure 26 shows the flow diagram implemented for the Smart Temperature Supervisor.

Figure 26: Smart Temperature Supervisor (STS) flow diagram
Threshold definitions

When the application of the cellular module operates at extreme temperatures with the Smart Temperature Supervisor enabled, the user should note that when outside of the valid temperature range, the device will automatically shut down as described above.

The input for the algorithm is always the temperature measured within the cellular module (Ti, internal). This value can be higher than the working ambient temperature (Ta, ambient), since (for example) during transmission at maximum power a significant fraction of DC input power is dissipated as heat. This behavior is partially compensated for by the definition of the upper shutdown threshold (tₚ) that is slightly higher than the declared environmental temperature limit.

The temperature thresholds are defined according the Table 19.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₂</td>
<td>Low temperature shutdown</td>
<td>-40 °C</td>
</tr>
<tr>
<td>t₁</td>
<td>Low temperature warning</td>
<td>-30 °C</td>
</tr>
<tr>
<td>tₚ</td>
<td>High temperature warning</td>
<td>+77 °C</td>
</tr>
<tr>
<td>t₂₂</td>
<td>High temperature shutdown</td>
<td>+97 °C</td>
</tr>
</tbody>
</table>

Table 19: Thresholds definition for Smart Temperature Supervisor

The sensor measures board temperature inside the shields, which can differ from the ambient temperature.

1.14.17 Power saving

The power saving configuration is disabled by default, but it can be enabled using the AT+UPSV command (for the complete description of the AT+UPSV command, see the u-blox AT commands manual [2]).

When power saving is enabled, the module automatically enters the low power idle mode whenever possible, reducing current consumption (see section 1.5.1.5 and the LARA-R2 series data sheet [1]).

During the low power idle mode, the module is temporarily not ready to communicate with an external device, as it is configured to reduce power consumption. The module wakes up from low power idle mode to active mode in the following events:

- Automatic periodic monitoring of the paging channel for the paging block reception according to network conditions (see 1.5.1.5, 1.9.1.4)
- Automatic periodic enable of the UART interface to receive / send data, with AT+UPSV=1 (see 1.9.1.4)
- RTS input set ON by the host DTE, with HW flow control disabled and AT+UPSV=2 (see 1.9.1.4)
- DTR input set ON by the host DTE, with AT+UPSV=3 (see 1.9.1.4)
- USB detection, applying 5 V (typ.) to VUSB_DET input (see 1.9.2)
- The connected USB host forces a remote wake-up of the module as USB device (see 1.9.2.4)
- The connected u-blox GNSS receiver forces a wake-up of the cellular module using the GNSS Tx data ready function over GPIO3 (see 1.9.4)
- The connected SDIO device forces a wake-up of the module as SDIO host (see 1.9.5)
- A preset RTC alarm occurs (see the u-blox AT commands manual [2], AT+CALA)

For the definition and the description of LARA-R2 series modules operating modes, including the events forcing transitions between the different operating modes, see section 1.4.
2 Design-in

2.1 Overview

For an optimal integration of LARA-R2 series modules in the final application board, follow the design guidelines stated in this section.

Every application circuit must be properly designed to guarantee the correct functionality of the related interface, but a number of points require greater attention during the design of the application device.

The following list provides a ranking of importance in the application design, starting from the highest relevance:

1. Module antenna connection: ANT1, ANT2 and ANT_DET pins. Antenna circuit directly affects the RF compliance of the device integrating a LARA-R2 series module with the applicable certification schemes. Very carefully follow the suggestions provided in section 2.4 for schematic and layout design.

2. Module supply: VCC and GND pins. The supply circuit affects the RF compliance of the device integrating a LARA-R2 series module with applicable certification schemes as well as antenna circuit design. Very carefully follow the suggestions provided in section 2.2.1 for schematic and layout design.

3. USB interface: USB_D+, USB_D- and VUSB_DET pins. Accurate design is required to guarantee USB 2.0 high-speed interface functionality. Carefully follow the suggestions provided in the related section 2.6.1 for schematic and layout design.

4. SIM interface: VSIM, SIM_CLK, SIM_IO, SIM_RST, SIM_DET pins. Accurate design is required to guarantee SIM card functionality and compliance with applicable conformance standards, also reducing the risk of RF coupling. Carefully follow the suggestions provided in section 2.5 for schematic and layout design.

5. HSIC interface: HSIC_DATA, HSIC_STRB pins. Accurate design is required to guarantee HSIC interface functionality. Carefully follow the suggestions provided in the relative section 2.6.3 for schematic and layout design.

6. SDIO interface: SDIO_D0, SDIO_D1, SDIO_D2, SDIO_D3, SDIO_CLK, SDIO_CMD pins. Accurate design is required to guarantee SDIO interface functionality. Carefully follow the suggestions provided in the relative section 2.6.5 for schematic and layout design.

7. System functions: RESET_N, PWR_ON pins. Accurate design is required to guarantee that the voltage level is well defined during operation. Carefully follow the suggestions provided in section 2.3 for schematic and layout design.

8. Other digital interfaces: UART, I2C, I2S, Host Select, GPIOs, and Reserved pins. Accurate design is required to guarantee proper functionality and reduce the risk of digital data frequency harmonics coupling. Follow the suggestions provided in 2.6.1, 2.6.4, 2.7.1, 2.3.3, 2.8 and 2.9 for schematic and layout design.

9. Other supplies: the V_BCKP RTC supply input/output and the V_INT digital interfaces supply output. Accurate design is required to guarantee proper functionality. Follow the suggestions provided in sections 2.2.2 and 2.2.3 for schematic and layout design.

☞ It is recommended to follow the specific design guidelines provided by each manufacturer of any external part selected for the application board integrating the u-blox cellular modules.
2.2 Supply interfaces

2.2.1 Module supply (VCC)

2.2.1.1 General guidelines for VCC supply circuit selection and design

All of the available VCC pins must be connected to the external supply minimizing the power loss due to series resistance.

GND pins are internally connected but connect all the available pins to solid ground on the application board, since a good (low impedance) connection to external ground can minimize power loss and improve RF and thermal performance.

LARA-R2 series modules must be supplied through the VCC pins by a proper DC power supply that should comply with the module VCC requirements summarized in Table 6.

The proper DC power supply can be selected according to application requirements (see Figure 27) between various possible supply sources types, of which the most common ones are the following:

- Switching regulator
- Low Drop-Out (LDO) linear regulator
- Rechargeable Lithium-ion (Li-Ion) or Lithium-ion polymer (Li-Pol) battery
- Primary (disposable) battery

![Figure 27: VCC supply concept selection](image)

The DC/DC switching step-down regulator is the typical choice when the available primary supply source has a nominal voltage much higher (e.g. greater than 5 V) than the modules VCC operating supply voltage. The use of switching step-down provides the best power efficiency for the overall application and minimizes current drawn from the main supply source. See sections 2.2.1.2 and 2.2.1.6, 2.2.1.10, 2.2.1.12 for the specific design-in.

The use of an LDO linear regulator becomes convenient for a primary supply with a relatively low voltage (e.g. less than 5 V). In this case the typical 90% efficiency of the switching regulator diminishes the benefit of voltage step-down and no true advantage is gained in input current savings. On the opposite side, linear regulators are not recommended for high voltage step-down as they dissipate a considerable amount of energy in thermal power. See sections 2.2.1.3 and 2.2.1.6, 2.2.1.10, 2.2.1.12 for the specific design-in.

If LARA-R2 series modules are deployed in a mobile unit where no permanent primary supply source is available, then a battery will be required to provide VCC. A standard 3-cell Li-Ion or Li-Pol battery pack directly connected to VCC is the usual choice for battery-powered devices. During charging, batteries with Ni-MH chemistry typically reach a maximum voltage that is above the maximum rating for VCC, and should therefore be avoided. See sections 2.2.1.4, 2.2.1.6, 2.2.1.7, 2.2.1.10, 2.2.1.12 for the specific design-in.

Keep in mind that the use of rechargeable batteries requires the implementation of a suitable charger circuit which is not included in the modules. The charger circuit must be designed to prevent...
over-voltage on the VCC pins, and it should be selected according to the application requirements: a DC/DC switching charger is the typical choice when the charging source has an high nominal voltage (e.g. ~12 V), whereas a linear charger is the typical choice when the charging source has a relatively low nominal voltage (~5 V). If both a permanent primary supply / charging source (e.g. ~12 V) and a rechargeable back-up battery (e.g. 3.7 V Li-Pol) are available at the same time as a possible supply source, then a proper charger / regulator with integrated power path management function can be selected to supply the module while simultaneously and independently charging the battery. See sections 2.2.1.8, 2.2.1.9, and 2.2.1.4, 2.2.1.6, 2.2.1.7, 2.2.1.10, 2.2.1.12 for the specific design-in.

An appropriate primary (not rechargeable) battery can be selected taking into account the maximum current specified in the LARA-R2 series data sheet [1] during connected mode, considering that primary cells might have weak power capability. See sections 2.2.1.5, 2.2.1.6, 2.2.1.10, and 2.2.1.12 for the specific design-in.

The usage of more than one DC supply at the same time should be carefully evaluated: depending on the supply source characteristics, different DC supply systems can turn out as being mutually exclusive.

The usage of a regulator or a battery not able to support the highest peak of VCC current consumption specified in the LARA-R2 series data sheet [1] is generally not recommended. However, if the selected regulator or battery is not able to support the highest peak current of the module, it must be able to support at least the highest averaged current consumption value specified in the LARA-R2 series data sheet [1] with an adequate margin. The additional energy required by the module during a 2G Tx slot can be provided by an appropriate bypass tank capacitor or super-capacitor with very large capacitance and very low ESR placed close to the module VCC pins. Depending on the actual capability of the selected regulator or battery, the required capacitance can be considerably larger than 1 mF and the required ESR can be in the range of few tens of mΩ. Carefully evaluate the super-capacitor characteristics, since aging and temperature may affect the actual characteristics.

The following sections highlight some design aspects for each of the supplies listed above, providing application circuit design-in compliant with the module VCC requirements summarized in Table 6.

2.2.1.2 Guidelines for VCC supply circuit design using a switching regulator

The use of a switching regulator is suggested when the difference from the available supply rail to the VCC value is high: switching regulators provide good efficiency transforming a 12 V or greater voltage supply to the typical 3.8 V value of the VCC supply.

The characteristics of the switching regulator connected to the VCC pins should meet the following prerequisites to comply with the module’s VCC requirements summarized in Table 6:

- **Power capability**: the switching regulator with its output circuit must be capable of providing a voltage value to the VCC pins within the specified operating range and must be capable of delivering to the VCC pins the specified maximum peak / pulse current consumption during Tx burst at the maximum Tx power specified in the LARA-R2 series data sheet [1]
- **Low output ripple**: the switching regulator together with its output circuit must be capable of providing a clean (low noise) VCC voltage profile.
- **High switching frequency**: for best performance and for smaller applications, it is recommended to select a switching frequency ≥ 600 kHz (since the L-C output filter is typically smaller for high switching frequencies). The use of a switching regulator with a variable switching frequency or with a switching frequency lower than 600 kHz must be evaluated carefully, since this can produce noise in the VCC voltage profile and therefore negatively impact modulation spectrum performance.
PWM mode operation: it is preferable to select regulators with a Pulse Width Modulation (PWM) mode. While in connected mode, the Pulse Frequency Modulation (PFM) mode and PFM/PWM modes transitions must be avoided in order to reduce noise on the VCC voltage profile. Switching regulators can be used that are able to switch between low ripple PWM mode and high ripple PFM mode, provided that the mode transition occurs when the module changes status from the idle/active modes to connected mode. It is permissible to use a regulator that switches from the PWM mode to the burst or PFM mode at an appropriate current threshold.

Output voltage slope: the use of the soft start function provided by some voltage regulators should be evaluated carefully, as the VCC voltage must ramp from 2.3 V to 2.8 V in less than 4 ms to switch on the module by applying the VCC supply. The module can be otherwise switched on by forcing a low level on the RESET_N pin during the VCC rising edge and then releasing the RESET_N pin when the VCC supply voltage stabilizes at its proper nominal value.

Figure 28 and the components listed in Table 20 show an example of a high reliability power supply circuit, where the VCC module is supplied by a step-down switching regulator capable of delivering the specified maximum peak / pulse current to the VCC pins, with low output ripple and with fixed switching frequency in PWM mode operation greater than 1 MHz.
Figure 29 and the components listed in Table 21 show an example of a low cost power supply circuit, where the VCC module supply is provided by a step-down switching regulator capable of delivering the specified maximum peak / pulse current to the VCC pins, transforming a 12 V supply input.

![Low cost VCC supply application circuit using step-down regulator](image)

Table 21: Components for a low cost VCC supply application circuit using a step-down regulator
2.2.1.3 Guidelines for VCC supply circuit design using a LDO linear regulator

The use of a linear regulator is suggested when the difference from the available supply rail and the VCC value is low: linear regulators provide high efficiency when transforming a 5 V supply to a voltage value within the module VCC normal operating range.

The characteristics of the LDO linear regulator connected to the VCC pins should meet the following prerequisites to comply with the module’s VCC requirements summarized in Table 6:

- **Power capabilities**: the LDO linear regulator with its output circuit must be capable of providing a voltage value to the VCC pins within the specified operating range and must be capable of delivering the maximum peak / pulse current consumption to the VCC pins during a Tx burst at the maximum Tx power specified in the LARA-R2 series data sheet [1].

- **Power dissipation**: the power handling capability of the LDO linear regulator must be checked to limit its junction temperature to the maximum rated operating range (i.e. check the voltage drop from the max input voltage to the min output voltage to evaluate the power dissipation of the regulator).

- **Output voltage slope**: the use of the soft start function provided by some voltage regulators should be evaluated carefully, as the VCC voltage must ramp from 2.3 V to 2.8 V in less than 4 ms to switch on the module by applying the VCC supply. The module can be otherwise switched on by forcing a low level on the RESET_N pin during the VCC rising edge and then releasing the RESET_N pin when the VCC supply voltage stabilizes at its proper nominal value.

Figures 30 and the components listed in Table 22 show an example of a high reliability power supply circuit, where the VCC module supply is provided by an LDO linear regulator which is capable of delivering the specified highest peak / pulse current, with the proper power handling capability. The regulator described in this example supports a wide input voltage range, and it includes internal circuitry for reverse battery protection, current limiting, thermal limiting and reverse current protection.

It is recommended to configure the LDO linear regulator to generate a voltage supply value slightly below the maximum limit of the module VCC normal operating range (e.g. ~4.1 V as in the circuit described in Figure 30 and Table 22). This reduces the power on the linear regulator and improves the whole thermal design of the supply circuit.

![Figure 30: Example of a high reliability VCC supply application circuit using an LDO linear regulator](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>10 µF Capacitor Ceramic X5R 0603 20% 6.3 V</td>
<td>GRM188R60J106ME47 - Murata</td>
</tr>
<tr>
<td>R1</td>
<td>9.1 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-079K1L - Yageo Phycomp</td>
</tr>
<tr>
<td>R2</td>
<td>3.9 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-073K9L - Yageo Phycomp</td>
</tr>
<tr>
<td>U1</td>
<td>LDO Linear Regulator ADJ 3.0 A</td>
<td>LT1764AEQ#PBF - Linear Technology</td>
</tr>
</tbody>
</table>

Table 22: Components for a high reliability VCC supply application circuit using an LDO linear regulator
Figure 31 and the components listed in Table 23 show an example of a low cost power supply circuit, where the VCC module supply is provided by an LDO linear regulator capable of delivering the specified highest peak / pulse current, with the proper power handling capability. The regulator described in this example supports a limited input voltage range and it includes internal circuitry for current and thermal protection.

It is recommended to configure the LDO linear regulator to generate a voltage supply value slightly below the maximum limit of the module VCC normal operating range (e.g. ~4.1 V as in the circuit described in Figure 31 and Table 23). This reduces the power on the linear regulator and improves the whole thermal design of the supply circuit.

![Figure 31: Example of a low cost VCC supply application circuit using an LDO linear regulator](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>10 μF Capacitor Ceramic X5R 0603 20% 6.3 V</td>
<td>GRM188R60J106ME47 - Murata</td>
</tr>
<tr>
<td>R1</td>
<td>27 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0727KL - Yageo Phycomp</td>
</tr>
<tr>
<td>R2</td>
<td>4.7 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-074K7L - Yageo Phycomp</td>
</tr>
<tr>
<td>U1</td>
<td>LDO Linear Regulator ADJ 3.0 A</td>
<td>LP38S01ATJ-ADJ/NOPB - Texas Instrument</td>
</tr>
</tbody>
</table>

Table 23: Components for a low cost VCC supply application circuit using an LDO linear regulator

2.2.1.4 Guidelines for VCC supply circuit design using a rechargeable battery

Rechargeable Li-Ion or Li-Pol batteries connected to the VCC pins should meet the following prerequisites to comply with the module VCC requirements summarized in Table 6:

- **Maximum pulse and DC discharge current**: the rechargeable Li-Ion battery with its related output circuit connected to the VCC pins must be capable of delivering a pulse current as the maximum peak / pulse current consumption during a Tx burst at the maximum Tx power specified in the LARA-R2 series data sheet [1], and must be capable of extensively delivering a DC current as the maximum average current consumption specified in the LARA-R2 series data sheet [1]. The maximum discharge current is not always reported in the data sheets of batteries, but the maximum DC discharge current is typically almost equal to the battery capacity in amp-hours divided by 1 hour.

- **DC series resistance**: the rechargeable Li-Ion battery with its output circuit must be capable of avoiding a VCC voltage drop below the operating range summarized in Table 6 during transmit bursts.
2.2.1.5 Guidelines for VCC supply circuit design using a primary battery

The characteristics of a primary (non-rechargeable) battery connected to the VCC pins should meet the following prerequisites to comply with the module’s VCC requirements summarized in Table 6:

- **Maximum pulse and DC discharge current**: the non-rechargeable battery with its related output circuit connected to the VCC pins must be capable of delivering a pulse current as the maximum peak current consumption during a Tx burst at the maximum Tx power specified in the LARA-R2 series data sheet [1], and must be capable of extensively delivering a DC current as the maximum average current consumption specified in the LARA-R2 series data sheet [1]. The maximum discharge current is not always reported in the data sheets of batteries, but the max DC discharge current is typically almost equal to the battery capacity in amp-hours divided by 1 hour.

- **DC series resistance**: the non-rechargeable battery with its output circuit must be capable of avoiding a VCC voltage drop below the operating range summarized in Table 6 during transmit bursts.

2.2.1.6 Additional guidelines for VCC supply circuit design

To reduce voltage drops, use a low impedance power source. The series resistance of the power supply lines (connected to the VCC and GND pins of the module) on the application board and battery pack should also be considered and minimized: cabling and routing must be as short as possible to minimize power losses.

Three pins are allocated for the VCC supply. Several pins are designated for the GND connection. It is recommended to properly connect all of them to supply the module to minimize series resistance losses.

For modules supporting 2G radio access technology, to avoid voltage drop undershoot and overshoot at the start and end of a transmit burst during a GSM call (when current consumption on the VCC supply can rise up as specified in the LARA-R2 series data sheet [1]), place a bypass capacitor with large capacitance (at least 100 µF) and low ESR near the VCC pins, for example:

- 330 µF capacitance, 45 mΩ ESR (e.g. KEMET T520D337M006ATE045, Tantalum Capacitor)

To reduce voltage ripple and noise, improving RF performance especially if the application device integrates an internal antenna, place the following bypass capacitors near the VCC pins:

- 68 pF 0402 capacitor with Self-Resonant Frequency in 800/900 MHz range (e.g. Murata GRM1555C1E560J)
- 15 pF 0402 capacitor with Self-Resonant Frequency in 1800/1900 MHz range (e.g. Murata GRM1555C1E150J)
- 8.2 pF 0402 capacitor with Self-Resonant Frequency in 2500/2600 MHz range (e.g. Murata GRM1555C1H8R2D)
- 10 nF 0402 capacitor (e.g. Murata GRM155R71C103K) to filter digital logic noise from clocks and data sources
- 100 nF 0402 capacitor (e.g. Murata GRM155R61C104K) to filter digital logic noise from clocks and data sources

A suitable series ferrite bead can be properly placed on the VCC line for additional noise filtering if required by the specific application according to the whole application board design.
Figure 32: Suggested schematic for the VCC bypass capacitors to reduce ripple / noise on the supply voltage profile

Table 24: Suggested components to reduce ripple / noise on VCC

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>8.2 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H8R2DZ01 - Murata</td>
</tr>
<tr>
<td>C2</td>
<td>15 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H150JA01 - Murata</td>
</tr>
<tr>
<td>C3</td>
<td>68 nF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H680JA01 - Murata</td>
</tr>
<tr>
<td>C4</td>
<td>10 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C103KA01 - Murata</td>
</tr>
<tr>
<td>C5</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C104KA01 - Murata</td>
</tr>
<tr>
<td>C6</td>
<td>330 µF Capacitor Tantalum D_SIZE 6.3 V 45 mΩ</td>
<td>T520D337M006ATE045 - KEMET</td>
</tr>
</tbody>
</table>

The necessity of each part depends on the specific design, but it is recommended to provide all the bypass capacitors described in Figure 32 / Table 24 if the application device integrates an internal antenna.

ESD sensitivity rating of the VCC supply pins is 1 kV (Human Body Model as per JESD22-A114). Higher protection level can be required if the line is externally accessible on the application board, e.g. if the accessible battery connector is directly connected to VCC pins. A higher protection level can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to the accessible point.

2.2.1.7 Additional guidelines for VCC supply circuit design of LARA-R211 modules

LARA-R211 modules provide separate supply inputs over the VCC pins (see Figure 3):

- **VCC** pins #52 and #53 represent the supply input for the internal RF power amplifier, demanding most of the total current drawn of the module when RF transmission is enabled during a voice/data call
- **VCC** pin #51 represents the supply input for the internal baseband Power Management Unit and the internal transceiver, demanding a minor part of the total current drawn of the module when RF transmission is enabled during a voice/data call

LARA-R211 modules support two different extended operating voltage ranges: one for the **VCC** pins #52 and #53, and another one for the **VCC** pin #51 (see the LARA-R2 series data sheet [1]).

All the **VCC** pins are in general intended to be connected to the same external power supply circuit, but separate supply sources can be implemented for specific (e.g. battery-powered) applications considering that the voltage at the **VCC** pins #52 and #53 can drop to a value lower than the one at the **VCC** pin #51, keeping the module still switched-on and functional. Figure 33 describes a possible application circuit.
Figure 33: VCC circuit example with a separate supply for LARA-R211 modules

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>330 μF Capacitor Tantalum D_SiZE 6.3 V 45 mΩ</td>
<td>T520D337M006ATE045 - KEMET</td>
</tr>
<tr>
<td>C2</td>
<td>10 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C03KA01 - Murata</td>
</tr>
<tr>
<td>C3</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A04KA01 - Murata</td>
</tr>
<tr>
<td>C4</td>
<td>68 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H680JA01 - Murata</td>
</tr>
<tr>
<td>C5</td>
<td>15 pF Capacitor Ceramic C0G 0402 5% 25 V</td>
<td>GRM1555C1E150JA01 - Murata</td>
</tr>
<tr>
<td>C6</td>
<td>8.2 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H8R2DZ01 - Murata</td>
</tr>
<tr>
<td>C7</td>
<td>10 μF Capacitor Ceramic X5R 0603 20% 6.3 V</td>
<td>GRM188R60J106ME47 - Murata</td>
</tr>
<tr>
<td>C8</td>
<td>22 μF Capacitor Ceramic X5R 1210 10% 25 V</td>
<td>GRM32ER61E226KE15 - Murata</td>
</tr>
<tr>
<td>C9</td>
<td>10 pF Capacitor Ceramic C0G 0402 5% 25 V</td>
<td>GRM1555C1E100JA01 - Murata</td>
</tr>
<tr>
<td>D1</td>
<td>Schottky Diode 40 V 1 A</td>
<td>SS14 - Vishay General Semiconductor</td>
</tr>
<tr>
<td>L1</td>
<td>10 μH Inductor 20% 1 A 276 mΩ</td>
<td>SRN3015-100M - Bourns Inc.</td>
</tr>
<tr>
<td>R1</td>
<td>1 MΩ Resistor 0402 5% 0.063 W</td>
<td>RC0402FR-071ML - Yageo Phycomp</td>
</tr>
<tr>
<td>R2</td>
<td>412 kΩ Resistor 0402 5% 0.063 W</td>
<td>RC0402FR-07412KL - Yageo Phycomp</td>
</tr>
<tr>
<td>U1</td>
<td>Step-up Regulator 350 mA</td>
<td>AP3015 - Diodes Incorporated</td>
</tr>
</tbody>
</table>

Table 25: Example of components for VCC circuit with a separate supply for LARA-R211 modules

2.2.1.8 Guidelines for external battery charging circuit

LARA-R2 series modules do not have an on-board charging circuit. Figure 34 provides an example of a battery charger design, suitable for applications powered with a Li-Ion (or Li-Polymer) battery.

In the application circuit, a rechargeable Li-Ion (or Li-Polymer) battery cell, that features proper pulse and DC discharge current capabilities and proper DC series resistance, is directly connected to the VCC supply input of the module. Battery charging is completely managed by the STMicroelectronics L6924U Battery Charger IC that, from a USB power source (5.0 V typ.), charges as a linear charger the battery, in three phases:

- **Pre-charge constant current**: (active when the battery is deeply discharged): the battery is charged with a low current, set to 10% of the fast-charge current
- **Fast-charge constant current**: the battery is charged with the maximum current, configured by the value of an external resistor to a value suitable for USB power source (~500 mA)
- **Constant voltage**: when the battery voltage reaches the regulated output voltage (4.2 V), the L6924U starts to reduce the current until the charge termination is done. The charging process ends when the charging current reaches the value configured by an external resistor to ~15 mA or when the charging timer reaches the value configured by an external capacitor to ~9800 s.

Using a battery pack with an internal NTC resistor, the L6924U can monitor the battery temperature to protect the battery from operating under unsafe thermal conditions.
The L6924U, as a linear charger, is more suitable for applications where the charging source has a relatively low nominal voltage (~5 V), so that a switching charger is suggested for applications where the charging source has a relatively high nominal voltage (e.g. ~12 V, see the following section 2.2.1.9 for specific design-in).

Figure 34: Li-ion (or Li-Polymer) battery charging application circuit

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Li-ion (or Li-Polymer) battery pack with 470 Ω NTC</td>
<td>Various manufacturer</td>
</tr>
<tr>
<td>C1, C4</td>
<td>1 μF Capacitor Ceramic X7R 0603 10% 16 V</td>
<td>GRM188R71C105KA12 - Murata</td>
</tr>
<tr>
<td>C2, C6</td>
<td>10 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C103KA01 - Murata</td>
</tr>
<tr>
<td>C3</td>
<td>1 nF Capacitor Ceramic X7R 0402 10% 50 V</td>
<td>GRM155R71H102KA01 - Murata</td>
</tr>
<tr>
<td>C5</td>
<td>330 μF Capacitor Tantalum D_SIZE 6.3 V 45 mΩ</td>
<td>T520D337M006ATE045 - KEMET</td>
</tr>
<tr>
<td>C7</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A104KA01 - Murata</td>
</tr>
<tr>
<td>C8</td>
<td>68 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM155555C1H680JA01 - Murata</td>
</tr>
<tr>
<td>C9</td>
<td>15 pF Capacitor Ceramic C0G 0402 5% 25 V</td>
<td>GRM155555C1E150JA01 - Murata</td>
</tr>
<tr>
<td>C10</td>
<td>8.2 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM155555C1H8R2DZ01 - Murata</td>
</tr>
<tr>
<td>D1, D2</td>
<td>Low Capacitance ESD Protection</td>
<td>CG0402MLE-18G - Bourns</td>
</tr>
<tr>
<td>R1, R2</td>
<td>24 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0724KL - Yageo Phycomp</td>
</tr>
<tr>
<td>R3</td>
<td>3.3 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-073K3L - Yageo Phycomp</td>
</tr>
<tr>
<td>R4</td>
<td>1.0 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-071K0L - Yageo Phycomp</td>
</tr>
<tr>
<td>U1</td>
<td>Single Cell Li-ion (or Li-Polymer) Battery Charger IC for USB port and AC Adapter</td>
<td>L6924U - STMicroelectronics</td>
</tr>
</tbody>
</table>

Table 26: Suggested components for a Li-ion (or Li-Polymer) battery charging application circuit

2.2.1.9 Guidelines for external charging and power path management circuit

Application devices where both a permanent primary supply / charging source (e.g. ~12 V) and a rechargeable back-up battery (e.g. 3.7 V Li-Pol) are available at the same time as the possible supply source should implement a suitable charger / regulator with an integrated power path management function to supply the module and the whole device while simultaneously and independently charging the battery.

Figure 35 illustrates a simplified block diagram circuit showing the working principle of a charger / regulator with integrated power path management function. This component allows the system to be powered by a permanent primary supply source (e.g. ~12 V) using the integrated regulator which simultaneously and independently recharges the battery (e.g. 3.7 V Li-Pol) that represents the back-up supply source of the system: the power path management feature permits the battery to supplement the system current requirements when the primary supply source is not available or cannot deliver the peak system currents.
A power management IC should meet the following prerequisites to comply with the module VCC requirements summarized in Table 6:

- High efficiency internal step down converter, compliant with the performances specified in section 2.2.1.2
- Low internal resistance in the active path Vout – Vbat, typically lower than 50 mΩ
- High efficiency switch mode charger with separate power path control

![Power path management IC diagram](image)

Figure 35: Charger / regulator with an integrated power path management circuit block diagram

Figure 36 and the components listed in Table 27 provide an application circuit example where the MPS MP2617H switching charger / regulator with an integrated power path management function provides the supply to the cellular module, while concurrently and autonomously charging a suitable Li-Ion (or Li-Polymer) battery with the proper pulse and DC discharge current capabilities and the proper DC series resistance according to the rechargeable battery recommendations described in section 2.2.1.4.

The MP2617H IC constantly monitors the battery voltage and selects whether to use the external main primary supply / charging source or the battery as the supply source for the module, and starts a charging phase accordingly.

The MP2617H IC normally provides a supply voltage to the module regulated from the external main primary source allowing immediate system operation even under missing or deeply discharged battery conditions: the integrated switching step-down regulator is capable of providing up to 3 A output current with low output ripple and fixed 1.6 MHz switching frequency in PWM mode operation. The module load is satisfied in priority, then the integrated switching charger will take the remaining current to charge the battery.

Additionally, the power path control allows an internal connection from the battery to the module with a low series internal ON resistance (40 mΩ typical), in order to supplement additional power to the module when the current demand increases over the external main primary source or when this external source is removed.

Battery charging is managed in three phases:

- **Pre-charge constant current** (active when the battery is deeply discharged): the battery is charged with a low current, set to 10% of the fast-charge current
- **Fast-charge constant current**: the battery is charged with the maximum current, configured by the value of an external resistor to a value suitable for the application
- **Constant voltage**: when the battery voltage reaches the regulated output voltage (4.2 V), the current is progressively reduced until the charge termination is done. The charging process ends when the charging current reaches the 10% of the fast-charge current or when the charging timer reaches the value configured by an external capacitor.
Using a battery pack with an internal NTC resistor, the MP2617H IC can monitor the battery temperature to protect the battery from operating under unsafe thermal conditions.

Several parameters, such as the charging current, the charging timings, the input current limit, and the system output voltage, can be easily set according to the specific application requirements, as the actual electrical characteristics of the battery and the external supply/charging source: proper resistors or capacitors must be accordingly connected to the related pins of the IC.

![Diagram](image-url)

Figure 36: Li-ion (or Li-Polymer) battery charging and power path management application circuit

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Li-ion (or Li-Polymer) battery pack with 10 kΩ NTC</td>
<td>Various manufacturer</td>
</tr>
<tr>
<td>C1, C6</td>
<td>22 µF Capacitor Ceramic X5R 1210 10% 25 V</td>
<td>GRM32ER61E226KE15 - Murata</td>
</tr>
<tr>
<td>C2, C4, C10</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A104KA01 - Murata</td>
</tr>
<tr>
<td>C3</td>
<td>1 µF Capacitor Ceramic X7R 0603 10% 25 V</td>
<td>GRM18BR71E105KA12 - Murata</td>
</tr>
<tr>
<td>C5</td>
<td>330 µF Capacitor Tantalum D_SIZE 6.3 V 45 mΩ</td>
<td>T520D337M006ATE045 - KEMET</td>
</tr>
<tr>
<td>C7, C12</td>
<td>68 pF Capacitor Ceramic COG 0402 5% 50 V</td>
<td>GRM1555C1H680JA01 - Murata</td>
</tr>
<tr>
<td>C8, C13</td>
<td>15 pF Capacitor Ceramic COG 0402 5% 25 V</td>
<td>GRM1555C1E150JA01 - Murata</td>
</tr>
<tr>
<td>C11</td>
<td>10 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM1555R71C103KA01 - Murata</td>
</tr>
<tr>
<td>D1, D2</td>
<td>Low Capacitance ESD Protection</td>
<td>CG0402MLE-18G - Bourns</td>
</tr>
<tr>
<td>D3</td>
<td>Schottky Diode 40 V 3 A</td>
<td>MBRA340T3G - ON Semiconductor</td>
</tr>
<tr>
<td>R1, R3, R5, R7</td>
<td>10 kΩ Resistor 0402 1% 1/16 W</td>
<td>Generic manufacturer</td>
</tr>
<tr>
<td>R2</td>
<td>1.05 kΩ Resistor 0402 1% 0.1 W</td>
<td>Generic manufacturer</td>
</tr>
<tr>
<td>R4</td>
<td>22 kΩ Resistor 0402 1% 1/16 W</td>
<td>Generic manufacturer</td>
</tr>
<tr>
<td>R6</td>
<td>26.5 kΩ Resistor 0402 1% 1/16 W</td>
<td>Generic manufacturer</td>
</tr>
<tr>
<td>L1</td>
<td>2.2 µH Inductor 7.4 A 13 mΩ 20%</td>
<td>SRN8040-2R2Y - Bourns</td>
</tr>
<tr>
<td>U1</td>
<td>Li-ion/Li-Polymer Battery DC/DC Charger / Regulator with integrated Power Path Management function</td>
<td>MP2617H - Monolithic Power Systems (MPS)</td>
</tr>
</tbody>
</table>

Table 27: Suggested components for Li-ion (or Li-Pol) battery charging and power path management application circuit
2.2.1.10 Guidelines for removing VCC supply

As described in section 1.6.2 and Figure 15, the VCC supply can be removed after the end of LARA-R2 series modules internal power-off sequence, which must be properly started sending the AT+CPWROFF command (see the u-blox AT commands manual [2]). Removing the VCC power can be useful in order to minimize the current consumption when the LARA-R2 series modules are switched off. Afterwards, the modules can be switched on again by re-applying the VCC supply.

If the VCC supply is generated by a switching or an LDO regulator, the application processor may control the input pin of the regulator which is provided to enable / disable the output of the regulator (as for example, the RUN input pin for the regulator described in Figure 28, or the SHDNn input pin for the regulator described in Figure 30), in order to apply / remove the VCC supply.

If the regulator that generates the VCC supply does not provide an on / off pin, or for other applications such as the battery-powered ones, the VCC supply can be switched off using an appropriate external p-channel MOSFET controlled by the application processor by means of a proper inverting transistor as shown in Figure 37, given that the external pMOS has to provide:

- Very low $R_{\text{DS(on)}}$ (for example, less than 50 mΩ), to minimize voltage drops
- Adequate maximum Drain current (see LARA-R2 series data sheet [1] for module consumption)
- Low leakage current, to minimize the consumption

![Figure 37: Example of application circuit for a VCC supply removal](image)

Table 28: Components for a VCC supply removal application circuit

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>47kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0747KL - Yageo Phycomp</td>
</tr>
<tr>
<td>R2</td>
<td>10kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0710KL - Yageo Phycomp</td>
</tr>
<tr>
<td>R3</td>
<td>100kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-07100KL - Yageo Phycomp</td>
</tr>
<tr>
<td>T1</td>
<td>P-Channel MOSFET Low On-Resistance</td>
<td>AO3415 - Alpha & Omega Semiconductor Inc.</td>
</tr>
<tr>
<td>T2</td>
<td>NPN BJT Transistor</td>
<td>BC847 - Infineon</td>
</tr>
<tr>
<td>C1</td>
<td>330µF Capacitor Tantalum D_SIZE 6.3 V 45 mΩ</td>
<td>T520D337M006ATE045 - KEMET</td>
</tr>
<tr>
<td>C2</td>
<td>10nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C103KA01 - Murata</td>
</tr>
<tr>
<td>C3</td>
<td>100nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A104KA01 - Murata</td>
</tr>
<tr>
<td>C4</td>
<td>56pF Capacitor Ceramic C0G 0402 5% 25 V</td>
<td>GRM1555C1E560JA01 - Murata</td>
</tr>
<tr>
<td>C5</td>
<td>15pF Capacitor Ceramic C0G 0402 5% 25 V</td>
<td>GRM1555C1E150JA01 - Murata</td>
</tr>
<tr>
<td>C6</td>
<td>8.2pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H8R2DZ01 - Murata</td>
</tr>
</tbody>
</table>

It is highly recommended to avoid an abrupt removal of the VCC supply during LARA-R2 series modules normal operations: the power-off procedure must be started by the AT+CPWROFF command, waiting the command response for a proper time period (see the u-blox AT commands manual [2]), and then a proper VCC supply must be held at least until the end of the modules’ internal power-off sequence, which occurs when the generic digital interfaces supply output (V_{INT}) is switched off by the module.
2.2.1.11 Guidelines for VCC supply layout design

- Good connection of the module VCC pins with a DC supply source is required for correct RF performance. Guidelines are summarized in the following list:
- All the available VCC pins must be connected to the DC source.
- VCC connection must be as wide as possible and as short as possible.
- Any series component with Equivalent Series Resistance (ESR) greater than few milliohms must be avoided.
- VCC connection must be routed through a PCB area separated from sensitive analog signals and sensitive functional units: it is good practice to interpose at least one layer of PCB ground between VCC track and other signal routing.
- Coupling between VCC and audio lines (especially microphone inputs) must be avoided, because the typical GSM burst has a periodic nature of approximately 217 Hz, which lies in the audio range.
- The tank bypass capacitor with low ESR for current spikes smoothing described in section 2.2.1.6 should be placed close to the VCC pins. If the main DC source is a switching DC-DC converter, place the large capacitor close to the DC-DC output and minimize the VCC track length. Otherwise, consider using separate large capacitors for the DC-DC converter and the cellular module.
- The bypass capacitors in the pF range described in section 2.2.1.6 should be placed as close as possible to the VCC pins. This is highly recommended if the device integrates an internal antenna.
- Since VCC is directly connected to RF Power Amplifiers, voltage ripple at high frequency may result in unwanted spurious modulation of the transmitter RF signal. This is more likely to happen with switching DC-DC converters, in which case it is better to select the highest operating frequency for the switcher and add a large L-C filter before connecting to the LARA-R2 series modules in the worst case.
- Shielding of the switching DC-DC converter circuit, or at least the use of shielded inductors for the switching DC-DC converter, may be considered since all switching power supplies may potentially generate interfering signals as a result of high-frequency, high-power switching.
- If VCC is protected by transient voltage suppressor to ensure that the voltage maximum ratings are not exceeded, place the protecting device along the path from the DC source toward the cellular module, preferably closer to the DC source (otherwise protection functionality may be compromised).

2.2.1.12 Guidelines for grounding layout design

Good connection of the module GND pins with the application board solid ground layer is required for correct RF performance. It significantly improves RF and thermal heat sink figures for the module.

- Connect each GND pin with the application board solid GND layer. It is strongly recommended that each GND pin surrounding VCC pins have one or more dedicated via down to the application board solid ground layer.
- The VCC supply current flows back to the main DC source through GND as ground current: provide an adequate return path with a suitable uninterrupted ground plane to the main DC source.
- It is recommended to implement one layer of the application PCB as a ground plane as wide as possible.
- If the application board is a multilayer PCB, then all the board layers should be filled with GND plane as much as possible and each GND area should be connected together with a complete via stack down to the main ground layer of the PCB. Use as many vias as possible to connect ground planes.
- Provide a dense line of vias at the edges of each GND area, in particular along RF and high speed lines.
- If the whole application device is composed of more than one PCB, then it is required to provide a good and solid ground connection between the GND areas of all the multiple PCBs.
- Good grounding of GND pins also ensures thermal heat sink. This is critical during call connection, when the real network commands the module to transmit at maximum power: proper grounding helps prevent module overheating.
2.2.2 RTC supply (V_BCKP)

2.2.2.1 Guidelines for V_BCKP circuit design

LARA-R2 series modules provide the V_BCKP RTC supply input/output, which can be mainly used to:

- Provide RTC back-up when VCC supply is removed

If RTC timing is required to run for a time interval of T [s] when VCC supply is removed, place a capacitor with a nominal capacitance of C [µF] at the V_BCKP pin. Choose the capacitor using the following formula:

\[
C \text{ [µF]} = \frac{(\text{Current_Consumption [µA]} \times T \text{ [s]})}{\text{Voltage_Drop [V]}} = 2.5 \times T \text{ [s]}
\]

For example, a 100 µF capacitor can be placed at V_BCKP to provide RTC backup holding the V_BCKP voltage within its valid range for around 40 s at +25 °C, after the VCC supply is removed. If a longer buffering time is required, a 70 mF super-capacitor can be placed at V_BCKP, with a 4.7 kΩ series resistor to hold the V_BCKP voltage within its valid range for approximately 8 hours at +25 °C, after the VCC supply is removed. The purpose of the series resistor is to limit the capacitor charging current due to the large capacitor specifications, and also to let a fast rise time of the voltage value at the V_BCKP pin after VCC supply has been provided. These capacitors allow the time reference to run during battery disconnection.

![Figure 38: Real time clock supply (V_BCKP) application circuits: (a) using a 100 µF capacitor to let the RTC run for ~1 minute after VCC removal; (b) using a 70 mF capacitor to let the RTC run for ~10 hours after VCC removal; (c) using a non-rechargeable battery](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100 µF Tantalum Capacitor</td>
<td>GRM43SR60J107M - Murata</td>
</tr>
<tr>
<td>R2</td>
<td>4.7 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-074K7L - Yageo Phycomp</td>
</tr>
<tr>
<td>C2</td>
<td>70 mF Capacitor</td>
<td>XH414H-I0V01E - Seiko Instruments</td>
</tr>
</tbody>
</table>

Table 29: Example of components for V_BCKP buffering

If a longer buffering time is required to allow the RTC time reference to run during a disconnection of the VCC supply, then an external battery can be connected to the V_BCKP pin. The battery should be able to provide a proper nominal voltage and must never exceed the maximum operating voltage for V_BCKP (specified in the Input characteristics of Supply/Power pins table in the LARA-R2 series data sheet [1]). The connection of the battery to V_BCKP should be done with a suitable series resistor for a rechargeable battery, or with an appropriate series diode for a non-rechargeable battery. The purpose of the series resistor is to limit the battery charging current due to the battery specifications, and also to allow a fast rise time of the voltage value at the V_BCKP pin after the VCC supply has been provided. The purpose of the series diode is to avoid a current flow from the module V_BCKP pin to the non-rechargeable battery.

☞ If the RTC timing is not required when the VCC supply is removed, it is not needed to connect the V_BCKP pin to an external capacitor or battery. In this case, the date and time are not updated when VCC is disconnected. If VCC is always supplied, then the internal regulator is supplied from the main supply and there is no need for an external component on V_BCKP.
Combining a LARA-R2 series cellular module with a u-blox GNSS positioning receiver, the positioning receiver VCC supply is controlled by the cellular module by means of the “GNSS supply enable” function provided by the GPIO2 of the cellular module. In this case, the V_BCKP supply output of the cellular module can be connected to the V_BCKP backup supply input pin of the GNSS receiver to provide the supply for the positioning real time clock and backup RAM when the VCC supply of the cellular module is within its operating range and the VCC supply of the GNSS receiver is disabled. This enables the u-blox GNSS receiver to recover from a power breakdown with either a hot start or a warm start (depending on the duration of the positioning VCC outage) and to maintain the configuration settings saved in the backup RAM. Refer to section 2.6.4 for more details regarding the application circuit with a u-blox GNSS receiver.

The internal regulator for V_BCKP is optimized for low leakage current and very light loads. Do not apply loads which might exceed the limit for the maximum available current from V_BCKP supply, as this can cause malfunctions in the module. The LARA-R2 series data sheet [1] describes the detailed electrical characteristics.

The V_BCKP supply output pin provides internal short circuit protection to limit the start-up current and protect the device in short circuit situations. No additional external short circuit protection is required.

ESD sensitivity rating of the V_BCKP supply pin is 1 kV (Human Body Model according to JESD22-A114). Higher protection level can be required if the line is externally accessible on the application board, e.g. if an accessible back-up battery connector is directly connected to V_BCKP pin, and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to the accessible point.

2.2.2.2 Guidelines for V_BCKP layout design

The RTC supply (V_BCKP) requires careful layout: avoid injecting noise on this voltage domain, as it may affect the stability of the 32 kHz oscillator.

2.2.3 Interface supply (V_INT)

2.2.3.1 Guidelines for V_INT circuit design

LARA-R2 series provide the V_INT generic digital interfaces 1.8 V supply output, which can be mainly used to:

- Indicate when the module is switched on (see sections 1.6.1, 1.6.2 for more details)
- Pull-up SIM detection signal (see section 2.5 for more details)
- Supply voltage translators to connect digital interfaces of the module to a 3.0 V device (see section 2.6.1)
- Pull-up DDC (I2C) interface signals (see section 2.6.4 for more details)
- Supply a 1.8 V u-blox 6 or subsequent GNSS receiver (see section 2.6.4 for more details)
- Supply an external device as an external 1.8 V audio codec (see section 2.7.1 for more details)

The V_INT supply output pin provides internal short circuit protection to limit the start-up current and protect the device in short circuit situations. No additional external short circuit protection is required.

Do not apply loads which might exceed the limit for maximum available current from V_INT supply (see the LARA-R2 series data sheet [1]) as this can cause malfunctions in the internal circuitry.
Since the V_INT supply is generated by an internal switching step-down regulator, the V_INT voltage ripple can range as specified in the LARA-R2 series data sheet [1]: it is not recommended to supply sensitive analog circuitry without adequate filtering for digital noise.

- V_INT can only be used as an output: do not connect any external supply source on V_INT.

- ESD sensitivity rating of the V_INT supply pin is 1 kV (HBM according to JESD22-A114). A higher protection level could be required if the line is externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to the accessible point.

- It is recommended to provide direct access to the V_INT pin on the application board by means of an accessible test point directly connected to the V_INT pin.

2.2.3.2 Guidelines for V_INT layout design

The V_INT supply output is generated by an integrated switching step-down converter, used internally to supply the generic digital interfaces. Because of this, it can be a source of noise: avoid coupling with sensitive signals.

2.3 System functions interfaces

2.3.1 Module power-on (PWR_ON)

2.3.1.1 Guidelines for PWR_ON circuit design

LARA-R2 series modules’ PWR_ON input is equipped with an internal active pull-up resistor to the VCC module supply as described in Figure 39: an external pull-up resistor is not required and should not be provided.

If connecting the PWR_ON input to a push button, the pin will be externally accessible on the application device. According to EMC/ESD requirements of the application, an additional ESD protection should be provided close to the accessible point, as described in Figure 39 and Table 30.

- The ESD sensitivity rating of the PWR_ON pin is 1 kV (HBM according to JESD22-A114). A higher protection level can be required if the line is externally accessible on the application board, e.g. if an accessible push button is directly connected to the PWR_ON pin. A higher protection level can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to the accessible point.

An open drain or open collector output is suitable to drive the PWR_ON input from an application processor, as the pin is equipped with an internal active pull-up resistor to the V_BCKP supply, as described in Figure 39.

A compatible push-pull output of an application processor can also be used. In any case, take care to set the proper level in all the possible scenarios to avoid an inappropriate module switch-on.
2.3.1.2 Guidelines for PWR_ON layout design

The power-on circuit (PWR_ON) requires careful layout since it is the sensitive input available to switch on the LARA-R2 series modules. It is required to ensure that the voltage level is well defined during operation and no transient noise is coupled on this line, otherwise the module might detect a spurious power-on request.

It is recommended to provide direct access to the PWR_ON pin on the application board by means of an accessible testpoint directly connected to the PWR_ON pin.

2.3.2 Module reset (RESET_N)

2.3.2.1 Guidelines for RESET_N circuit design

LARA-R2 series RESET_N is equipped with an internal pull-up to the V_BCKP supply as described in Figure 40. An external pull-up resistor is not required.

If connecting the RESET_N input to a push button, the pin will be externally accessible on the application device. According to EMC/ESD requirements of the application, an additional ESD protection device (e.g. the EPCOS CA05P4S14THSG varistor) should be provided close to the accessible point on the line connected to this pin, as described in Figure 40 and Table 31.

The ESD sensitivity rating of the RESET_N pin is 1 kV (Human Body Model as per JESD22-A114). A higher protection level can be required if the line is externally accessible on the application board, e.g. if an accessible push button is directly connected to the RESET_N pin. A higher protection level can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to the accessible point.

An open drain output is suitable to drive the RESET_N input from an application processor as it is equipped with an internal pull-up to V_BCKP supply, as described in Figure 40.

A compatible push-pull output of an application processor can also be used. In any case, take care to set the proper level in all the possible scenarios to avoid an inappropriate module reset, switch-on or switch-off.

Table 30: Example of pull-up resistor and ESD protection for the PWR_ON application circuit

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>Varistor array for ESD protection</td>
<td>CT0402S14AHSG - EPCOS</td>
</tr>
</tbody>
</table>

Figure 39: PWR_ON application circuits using a push button and an open drain output of an application processor
If the external reset function is not required by the customer application, the **RESET_N** pin can be left unconnected to external components, but it is recommended to provide direct access on the application board by means of an accessible testpoint directly connected to the **RESET_N** pin.

2.3.2.2 Guidelines for **RESET_N** layout design

The reset circuit (**RESET_N**) requires careful layout due to the pin function: ensure that the voltage level is well defined during operation and no transient noise is coupled on this line, otherwise the module might detect a spurious reset request. It is recommended to keep the connection line to **RESET_N** as short as possible.

2.3.3 Module / host configuration selection

2.3.3.1 Guidelines for **HOST_SELECT** circuit design

The functionality of the **HOST_SELECT** pin is not supported by the "02", "62" and "82" versions.

LARA-R2 series modules include one pin (**HOST_SELECT**) to select the module / host application processor configuration: the pin is available to select, enable, connect, disconnect and subsequently re-connect the HSIC (USB High-Speed Inter-Chip) interface.

LARA-R2 series data sheet [1] describes the detailed electrical characteristics of **HOST_SELECT** pin.

Further guidelines for **HOST_SELECT** pin circuit design will be described in detail in a successive release of the System Integration Manual.

Do not apply voltage to the **HOST_SELECT** pin before the switch-on of its supply source (**V_INT**), to avoid latch-up of circuits and allow a proper boot of the module. If the external signal connected to the cellular module cannot be tri-stated or set low, insert a multi-channel digital switch (e.g. TI SN74CB3Q16244, TS5A3159, or TS5A63157) between the two-circuit connections and set to high impedance before the **V_INT** switch-on.

The ESD sensitivity rating of the **HOST_SELECT** pin is 1 kV (HBM as per JESD22-A114). A higher protection level could be required if the line is externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG) close to the accessible points.

If the **HOST_SELECT** pin is not used, it can be left unconnected on the application board.

2.3.3.2 Guidelines for **HOST_SELECT** layout design

The pin for the selection of the module / host application processor configuration (**HOST_SELECT**) is generally not critical for layout.

Figure 40: **RESET_N application circuits using a push button and an open drain output of an application processor

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>Varistor for ESD protection</td>
<td>CT0402S14AHSG - EPCOS</td>
</tr>
</tbody>
</table>

Table 31: Example of ESD protection component for the **RESET_N application circuit**

☞ If the external reset function is not required by the customer application, the **RESET_N** pin can be left unconnected to external components, but it is recommended to provide direct access on the application board by means of an accessible testpoint directly connected to the **RESET_N** pin.
2.4 Antenna interface

LARA-R2 series modules provide two RF interfaces for connecting the external antennas:

- The ANT1 pin represents the primary RF input/output for LTE/3G/2G RF signals transmission and reception.
- The ANT2 pin represents the secondary RF input for LTE/3G Rx diversity RF signals reception.

Both the ANT1 and the ANT2 pins have a nominal characteristic impedance of 50 Ω and must be connected to the related antenna through a 50 Ω transmission line to allow proper transmission/reception of RF signals.

☞ Two antennas (one connected to ANT1 pin and one connected to ANT2 pin) must be used to support the LTE/3G Rx diversity radio technology. This is a required feature for LTE category 1 User Equipment (up to 10.2 Mb/s Down-Link data rate) according to the 3GPP specifications.

2.4.1 Antenna RF interface (ANT1 / ANT2)

2.4.1.1 General guidelines for antenna selection and design

The antenna is the most critical component to be evaluated. Designers must take care of the antennas from all perspectives at the very start of the design phase when the physical dimensions of the application board are under analysis/decision, since the RF compliance of the device integrating LARA-R2 series modules with all the applicable required certification schemes depends on the antenna radiating performance.

Cellular antennas are typically available in the types of linear monopole or PCB antennas such as patches or ceramic SMT elements.

- External antennas (e.g. linear monopole):
 - External antennas basically do not imply a physical restriction to the design of the PCB where the LARA-R2 series module is mounted.
 - The radiation performance mainly depends on the antennas. It is required to select antennas with optimal radiating performance in the operating bands.
 - RF cables should be carefully selected to have minimum insertion losses. Additional insertion loss will be introduced by low quality or long cable. Large insertion loss reduces both transmit and receive radiation performance.
 - A high quality 50 Ω RF connector provides proper PCB-to-RF-cable transition. It is recommended to strictly follow the layout and cable termination guidelines provided by the connector manufacturer.
 - If antenna detection functionality is required, select an antenna assembly provided with a proper built-in diagnostic circuit with a resistor connected to ground: see guidelines in section 2.4.2.

- Integrated antennas (e.g. patch-like antennas):
 - Internal integrated antennas imply a physical restriction to the design of the PCB:
 - An integrated antenna excites RF currents on its counterpoise, typically the PCB ground plane of the device that becomes part of the antenna: its dimension defines the minimum frequency that can be radiated. Therefore, the ground plane can be reduced down to a minimum size that should be similar to the quarter of the wavelength of the minimum frequency that must be radiated, given that the orientation of the ground plane relative to the antenna element must be considered.
 - The isolation between the primary and the secondary antennas must be as high as possible and the correlation between the 3D radiation patterns of the two antennas must be as low as possible.
possible. In general, a separation of at least a quarter wavelength between the two antennas is required to achieve a good isolation and low pattern correlation.

As a numerical example, the physical restriction to the PCB design can be considered as following:

- Frequency = 750 MHz → Wavelength = 40 cm → Minimum GND plane size = 10 cm
- Radiation performance depends on the whole PCB and antenna system design, including product mechanical design and usage. Antennas should be selected with optimal radiating performance in the operating bands according to the mechanical specifications of the PCB and the whole product.
- It is recommended to select a pair of custom antennas designed by an antennas’ manufacturer if the required ground plane dimensions are very small (e.g. less than 6.5 cm long and 4 cm wide). The antenna design process should begin at the start of the whole product design process.
- It is highly recommended to strictly follow the detailed and specific guidelines provided by the antenna manufacturer regarding correct installation and deployment of the antenna system, including PCB layout and matching circuity.
- Further to the custom PCB and product restrictions, antennas may require tuning to obtain the required performance for compliance with all the applicable required certification schemes. It is recommended to consult the antenna manufacturer for the design-in guidelines for antenna matching relative to the custom application.

In both cases, selecting external or internal antennas, these recommendations should be observed:

- Select antennas providing optimal return loss (or VSWR) figure over all the operating frequencies.
- Select antennas providing optimal efficiency figure over all the operating frequencies.
- Select antennas providing similar efficiency for both the primary (ANT1) and the secondary (ANT2) antenna.
- Select antennas providing appropriate gain figure (i.e. combined antenna directivity and efficiency figure) so that the electromagnetic field radiation intensity do not exceed the regulatory limits specified in some countries (e.g. by the FCC in the United States, as reported in section 4.2.2).
- Select antennas capable to provide low Envelope Correlation Coefficient between the primary (ANT1) and the secondary (ANT2) antenna: the 3D antenna radiation patterns should have lobes in different directions.

2.4.1.2 Guidelines for antenna RF interface design

Guidelines for ANT1 / ANT2 pins RF connection design

Proper transition between ANT1 / ANT2 pads and the application board PCB must be provided, implementing the following design-in guidelines for the layout of the application PCB close to the ANT1/ANT2 pads:

- On a multilayer board, the whole layer stack below the RF connection should be free of digital lines.
- Increase GND keep-out (i.e. clearance, a void area) around the ANT1/ANT2 pads, on the top layer of the application PCB, to at least 250 µm up to adjacent pads metal definition and up to 400 µm on the area below the module, to reduce parasitic capacitance to ground, as described in the left example of Figure 41.
- Add GND keep-out (i.e. clearance, a void area) on the buried metal layer below the ANT1/ANT2 pads if the top-layer to buried layer dielectric thickness is below 200 µm, to reduce parasitic capacitance to ground, as described in the right example of Figure 41.
Guidelines for RF transmission line design

Any RF transmission line, such as the ones from the ANT1 and ANT2 pads up to the related antenna connector or up to the related internal antenna pad, must be designed so that the characteristic impedance is as close as possible to 50 Ω.

RF transmission lines can be designed as a micro strip (consists of a conducting strip separated from a ground plane by a dielectric material) or a strip line (consists of a flat strip of metal which is sandwiched between two parallel ground planes within a dielectric material). The micro strip, implemented as a coplanar waveguide, is the most common configuration for printed circuit boards.

Figure 42 and Figure 43 provide two examples of proper 50 Ω coplanar waveguide designs. The first example of an RF transmission line can be implemented for a 4-layer PCB stack-up herein described, and the second example of an RF transmission line can be implemented for a 2-layer PCB stack-up herein described.
If the two examples do not match the application PCB layup, the 50 Ω characteristic impedance calculation can be made using the HFSS commercial finite element method solver for electromagnetic structures from Ansys Corporation, or using freeware tools like Avago / Broadcom AppCAD (https://www.broadcom.com/appcad), taking care of the approximation formulas used by the tools for the impedance computation.

To achieve a 50 Ω characteristic impedance, the width of the transmission line must be chosen depending on:

- the thickness of the transmission line itself (e.g. 35 µm in the examples of Figure 42 and Figure 43)
- the thickness of the dielectric material between the top layer (where the transmission line is routed) and the inner closer layer implementing the ground plane (e.g. 270 µm in Figure 42, 1510 µm in Figure 43)
- the dielectric constant of the dielectric material (e.g. dielectric constant of the FR-4 dielectric material in Figure 42 and Figure 43)
- the gap from the transmission line to the adjacent ground plane on the same layer of the transmission line (e.g. 500 µm in Figure 42, 400 µm in Figure 43)

If the distance between the transmission line and the adjacent GND area (on the same layer) does not exceed 5 times the track width of the microstrip, use the “Coplanar Waveguide” model for the 50 Ω calculation.

Additionally to the 50 Ω impedance, the following guidelines are recommended for the transmission line design:

- Minimize the transmission line length: the insertion loss should be minimized as much as possible, in the order of a few tenths of a dB.
- Add GND keep-out (i.e. clearance, a void area) on buried metal layers below any pad of component present on the RF transmission line, if top-layer to buried layer dielectric thickness is below 200 µm, to reduce parasitic capacitance to ground.
- The transmission line width and spacing to GND must be uniform and routed as smoothly as possible: avoid abrupt changes of width and spacing to GND.
- Add GND vias around transmission line, as described in Figure 44.
- Ensure solid metal connection of the adjacent metal layer on the PCB stack-up to the main ground layer, providing enough on the adjacent metal layer, as described in Figure 44.
- Route RF transmission lines far from any noise source (as switching supplies and digital lines) and from any sensitive circuit (as analog audio lines).
- Avoid stubs on the transmission line.
- Avoid signal routing in parallel to the transmission line or crossing the transmission line on buried metal layer.
- Do not route the microstrip line below discrete components or other mechanics placed on the top layer.

An example of proper RF circuit design is illustrated in Figure 44. In this case, the ANT1 and ANT2 pins are directly connected to SMA connectors by means of proper 50 Ω transmission lines, designed with proper layout.
Guidelines for RF termination design

RF terminations must provide a characteristic impedance of 50 Ω as well as the RF transmission lines up to the RF terminations themselves, to match the characteristic impedance of the ANT1/ANT2 ports of the modules.

However, real antennas do not have a perfect 50 Ω load on all the supported frequency bands. Therefore, to reduce as much as possible any performance degradation due to antennas mismatch, the RF terminations must provide optimal return loss (or VSWR) figure over all the operating frequencies, as summarized in Table 7 and Table 8.

If external antennas are used, the antenna connectors represent the RF termination on the PCB:

- Use suitable 50 Ω connectors providing proper PCB-to-RF-cable transition.
- Strictly follow the connector manufacturer’s recommended layout, for example:
 - SMA Pin-Through-Hole connectors require GND keep-out (i.e. clearance, a void area) on all the layers around the central pin up to annular pads of the four GND posts, as shown in Figure 44.
 - U.FL surface mounted connectors require no conductive traces (i.e. clearance, a void area) in the area below the connector between the GND land pads.
- Cut out the GND layer under RF connectors and close to buried vias, in order to remove stray capacitance and thus keep the RF line 50 Ω, e.g. the active pad of U.FL connectors needs to have a GND keep-out (i.e. clearance, a void area) at least on the first inner layer to reduce parasitic capacitance to ground.

If integrated antennas are used, the RF terminations are represented by the integrated antennas themselves. The following guidelines should be followed:

- Use antennas designed by an antenna manufacturer, providing the best possible return loss (or VSWR).
- Provide a ground plane large enough according to the relative integrated antenna requirements. The ground plane of the application PCB can be reduced down to a minimum size that must be similar to one quarter of a wavelength of the minimum frequency that must be radiated. As a numerical example,

 \[
 \text{Frequency} = 750 \text{ MHz} \rightarrow \text{Wavelength} = 40 \text{ cm} \rightarrow \text{Minimum GND plane size} = 10 \text{ cm}
 \]
- It is highly recommended to strictly follow the detailed and specific guidelines provided by the antenna manufacturer regarding correct installation and deployment of the antenna system, including PCB layout and matching circuitry.
- Further to the custom PCB and product restrictions, antennas may require a tuning to comply with all the applicable required certification schemes. It is recommended to consult the antenna manufacturer for the design-in guidelines for the antenna matching relative to the custom application.

Additionally, these recommendations regarding the antenna system placement must be followed:
- Do not place antennas within a closed metal case.
- Do not place the antennas in close vicinity to the end user since the emitted radiation in human tissue is limited by regulatory requirements.
- Place the antennas far from sensitive analog systems or employ countermeasures to reduce EMC issues.
- Take care of interaction between co-located RF systems since the cellular transmitted power may interact or disturb the performance of companion systems.
- Place the two LTE antennas providing low Envelope Correlation Coefficient (ECC) between primary (ANT1) and secondary (ANT2) antenna: the antenna 3D radiation patterns should have lobes in different directions. The ECC between the primary and secondary antennas needs to be enough low to comply with the radiated performance requirements specified by related certification schemes, as indicated in Table 9.
- Place the two LTE antennas providing enough high isolation (see Table 9) between primary (ANT1) and secondary (ANT2) antenna. The isolation depends on the distance between antennas (separation of at least a quarter wavelength required for good isolation), antenna type (using antennas with different polarization improves isolation), and the antenna 3D radiation patterns (uncorrelated patterns improve isolation).

Examples of antennas

Table 32 lists some examples of possible internal on-board surface-mount antennas.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taoglas</td>
<td>PA.710.A</td>
<td>Warrior</td>
<td>GSM / WCDMA / LTE SMD Antenna 698..960 MHz, 1710..2170 MHz, 2300..2400 MHz, 2490..2690 MHz 40.0 x 6.0 x 5.0 mm</td>
</tr>
<tr>
<td>Taoglas</td>
<td>PA.711.A</td>
<td>Warrior II</td>
<td>GSM / WCDMA / LTE SMD Antenna Pairs with the Taoglas PA.710.A Warrior for LTE MIMO applications 698..960 MHz, 1710..2170 MHz, 2300..2400 MHz, 2490..2690 MHz 40.0 x 6.0 x 5.0 mm</td>
</tr>
<tr>
<td>Taoglas</td>
<td>PCS.06.A</td>
<td>Havok</td>
<td>GSM / WCDMA / LTE SMD Antenna 698..960 MHz, 1710..2170 MHz, 2500..2690 MHz 42.0 x 10.0 x 3.0 mm</td>
</tr>
<tr>
<td>Antenova</td>
<td>SR4L002</td>
<td>Lucida</td>
<td>GSM / WCDMA / LTE SMD Antenna 698..960 MHz, 1710..2170 MHz, 2300..2400 MHz, 2490..2690 MHz 35.0 x 8.5 x 3.2 mm</td>
</tr>
<tr>
<td>Ethertronics</td>
<td>P822601</td>
<td>Prestta</td>
<td>GSM / WCDMA / LTE SMD Antenna 698..960 MHz, 1710..2170 MHz, 2490..2700 MHz 50.0 x 8.0 x 3.2 mm</td>
</tr>
<tr>
<td>Ethertronics</td>
<td>P822602</td>
<td></td>
<td>GSM / WCDMA / LTE SMD Antenna 698..960 MHz, 1710..2170 MHz, 2490..2700 MHz 50.0 x 8.0 x 3.2 mm</td>
</tr>
</tbody>
</table>

Table 32: Examples of internal surface-mount antennas
Table 33 lists some examples of possible internal off-board PCB-type antennas with cable and connector.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taoglas</td>
<td>FXUB63.07.0150C</td>
<td>Maximus</td>
<td>GSM / WCDMA / LTE Antenna on flexible PCB with cable and U.FL 698..960 MHz, 1575.42 MHz, 1710..2170 MHz, 2400..2700 MHz, 3400..3600 MHz, 4800..6000 MHz 120.2 x 21.2 mm</td>
</tr>
<tr>
<td>Taoglas</td>
<td>FXUB66.07.0150C</td>
<td></td>
<td>GSM / WCDMA / LTE Antenna on flexible PCB with cable and U.FL 698..960 MHz, 1390..1435 MHz, 1575.42 MHz, 1710..2170 MHz, 2400..2700 MHz, 3400..3600 MHz, 4800..6000 MHz 120.2 x 21.2 mm</td>
</tr>
<tr>
<td>Taoglas</td>
<td>FXUB70.A07.C.001</td>
<td></td>
<td>GSM / WCDMA / LTE MIMO Antenna on flexible PCB with cable and U.FL 698..960 MHz, 1575.42 MHz, 1710..2170 MHz, 2400..2690 MHz 182.2 x 21.2 mm</td>
</tr>
<tr>
<td>Ethertronics</td>
<td>1002289</td>
<td></td>
<td>GSM / WCDMA / LTE Antenna on flexible PCB with cable and U.FL 698..960 MHz, 1710..2700 MHz 50.0 x 8.0 x 3.2 mm</td>
</tr>
<tr>
<td>EAD</td>
<td>FSQS35241-UF-10</td>
<td>SQ7</td>
<td>GSM / WCDMA / LTE Antenna on PCB with cable and U.FL 690..960 MHz, 1710..2170 MHz, 2500..2700 MHz 110.0 x 21.0 mm</td>
</tr>
</tbody>
</table>

Table 33: Examples of internal antennas with cable and connector

Table 34 lists some examples of possible external antennas.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Part number</th>
<th>Product name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taoglas</td>
<td>GSA.8827.A101111</td>
<td>Phoenix</td>
<td>GSM / WCDMA / LTE adhesive-mount antenna with cable and SMA(M) 698..960 MHz, 1575.42 MHz, 1710..2170 MHz, 2490..2690 MHz 105 x 30 x 7.7 mm</td>
</tr>
<tr>
<td>Taoglas</td>
<td>TG.30.8112</td>
<td></td>
<td>GSM / WCDMA / LTE swivel dipole antenna with SMA(M) 698..960 MHz, 1575.42 MHz, 1710..2170 MHz, 2400..2700 MHz 148.6 x 49 x 10 mm</td>
</tr>
<tr>
<td>Taoglas</td>
<td>MA241.BL.001</td>
<td>Genesis</td>
<td>GSM / WCDMA / LTE MIMO 2in1 adhesive-mount combination antenna waterproof IP67 rated with cable and SMA(M) 698..960 MHz, 1710..2170 MHz, 2400..2700 MHz 205.8 x 58 x 12.4 mm</td>
</tr>
<tr>
<td>Laird Tech.</td>
<td>TRA6927M3PW-001</td>
<td></td>
<td>GSM / WCDMA / LTE screw-mount antenna with N-type(F) 698..960 MHz, 1710..2170 MHz, 2300..2700 MHz 83.8 x Ø 36.5 mm</td>
</tr>
<tr>
<td>Laird Tech.</td>
<td>CMS69273</td>
<td></td>
<td>GSM / WCDMA / LTE ceiling-mount antenna with cable and N-type(F) 698..960 MHz, 1575.42 MHz, 1710..2700 MHz 86 x Ø 199 mm</td>
</tr>
<tr>
<td>Laird Tech.</td>
<td>OC69271-FNM</td>
<td></td>
<td>GSM / WCDMA / LTE pole-mount antenna with N-type(M) 698..960 MHz, 1710..2690 MHz 248 x Ø 24.5 mm</td>
</tr>
<tr>
<td>Laird Tech.</td>
<td>CMD69273-30NM</td>
<td></td>
<td>GSM / WCDMA / LTE ceiling-mount MIMO antenna with cables & N-type(M) 698..960 MHz, 1710..2700 MHz 43.8 x Ø 218.7 mm</td>
</tr>
<tr>
<td>Pulse Electronics</td>
<td>WA700/2700SMA</td>
<td></td>
<td>GSM / WCDMA / LTE clip-mount MIMO antenna with cables and SMA(M) 698..960 MHz, 1710..2700 MHz 149 x 127 x 5.1 mm</td>
</tr>
</tbody>
</table>

Table 34: Examples of external antennas
2.4.2 Antenna detection interface (ANT_DET)

2.4.2.1 Guidelines for ANT_DET circuit design

Figure 45 and Table 35 describe the recommended schematic / components for the antennas detection circuit that must be provided on the application board and for the diagnostic circuit that must be provided on the antennas' assembly to achieve primary and secondary antenna detection functionality.

Figure 45: Suggested schematic for the antenna detection circuit on the application board and the diagnostic circuit on the antennas assembly

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3</td>
<td>27 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H270J - Murata</td>
</tr>
<tr>
<td>D1</td>
<td>Very Low Capacitance ESD Protection</td>
<td>PESD0402-140 - Tyco Electronics</td>
</tr>
<tr>
<td>D2</td>
<td>Ultra Low Capacitance ESD Protection</td>
<td>ESD0P2RF-02LRH - Infineon</td>
</tr>
<tr>
<td>L1, L2</td>
<td>68 nH Multilayer Inductor 0402 (SRF ~1 GHz)</td>
<td>LQG15HS68NJ02 - Murata</td>
</tr>
<tr>
<td>R1</td>
<td>10 kΩ Resistor 0402 1% 0.063 W</td>
<td>RK73HETTP1002F - KOA Speer</td>
</tr>
<tr>
<td>J1, J2</td>
<td>SMA Connector 50 Ω Through Hole Jack</td>
<td>SMA6251A1-3GTS0G-50 - Amphenol</td>
</tr>
<tr>
<td>C4, C5</td>
<td>22 pF Capacitor Ceramic C0G 0402 5% 25 V</td>
<td>GRM1555C1H220J - Murata</td>
</tr>
<tr>
<td>L3, L4</td>
<td>68 nH Multilayer Inductor 0402 (SRF ~1 GHz)</td>
<td>LQG15HS68NJ02 - Murata</td>
</tr>
<tr>
<td>R2, R3</td>
<td>15 kΩ Resistor for Diagnostic</td>
<td>Various Manufacturers</td>
</tr>
</tbody>
</table>

Table 35: Suggested components for the antenna detection circuit on the application board and the diagnostic circuit on the antennas assembly

The antenna detection circuit and diagnostic circuit suggested in Figure 45 and Table 35 are explained here:

- When antenna detection is forced by the AT+UANTR command, ANT_DET generates a DC current measuring the resistance (R2 // R3) from the antenna connectors (J1, J2) provided on the application board to GND.
- DC blocking capacitors are needed at the ANT1/ANT2 pins (C2, C3) and at the antenna radiating element (C4, C5) to decouple the DC current generated by the ANT_DET pin.
- Choke inductors with a Self Resonance Frequency (SRF) in the range of 1 GHz are needed in series at the ANT_DET pin (L1, L2) and in series at the diagnostic resistor (L3, L4), to avoid a reduction of the RF performance of the system, improving the RF isolation of the load resistor.
- Additional components (R1, C1 and D1 in Figure 45) are needed at the ANT_DET pin as ESD protection.
- The ANT1/ANT2 pins must be connected to the antenna connector by means of a transmission line with nominal characteristics impedance as close as possible to 50 Ω.

The DC impedance at the RF port for some antennas may be a DC open (e.g. linear monopole) or a DC short to reference GND (e.g. PIFA antenna). For those antennas, without the diagnostic circuit of Figure 45, the measured DC resistance is always at the limits of the measurement range (respectively
open or short), and there is no means to distinguish between a defect on the antenna path with similar characteristics (respectively: removal of linear antenna or RF cable shorted to GND for a PIFA antenna).

Furthermore, any other DC signal injected to the RF connection from an ANT connector to a radiating element will alter the measurement and produce invalid results for antenna detection.

☞ It is recommended to use an antenna with a built-in diagnostic resistor in the range from 5 kΩ to 30 kΩ to assure good antenna detection functionality and avoid a reduction of module RF performance. The choke inductor should exhibit a parallel Self Resonance Frequency (SRF) in the range of 1 GHz to improve the RF isolation of load resistor.

For example:

Consider an antenna with a built-in DC load resistor of 15 kΩ. Using the +UANTR AT command, the module reports the resistance value evaluated from the antenna connector provided on the application board to GND:

- Reported values close to the used diagnostic resistor nominal value (i.e. values from 13 kΩ to 17 kΩ if a 15 kΩ diagnostic resistor is used) indicate that the antenna is properly connected.
- Values close to the measurement range maximum limit (approximately 50 kΩ) or an open-circuit “over range” report (see the u-blox AT commands manual [2]) means that that the antenna is not connected or the RF cable is broken.
- Reported values below the measurement range minimum limit (1 kΩ) highlights a short to GND at the antenna or along the RF cable.
- Measurement inside the valid measurement range and outside the expected range may indicate an improper connection, damaged antenna or wrong value of antenna load resistor for diagnostics.
- The reported value could differ from the real resistance value of the diagnostic resistor mounted inside the antenna assembly due to antenna cable length, antenna cable capacity or the measurement method used.

☞ If the primary / secondary antenna detection function is not required by the customer application, the ANT_DET pin can be left not connected and the ANT1 / ANT2 pins can be directly connected to the related antenna connector by means of a 50 Ω transmission line as described in Figure 44.

2.4.2.2 Guidelines for ANT_DET layout design

The recommended layout for the primary antenna detection circuit to be provided on the application board to achieve the primary antenna detection functionality, implementing the recommended schematic described in Figure 45 and Table 35, is explained here:

- The ANT1 / ANT2 pins must be connected to the antenna connector by means of a 50 Ω transmission line, implementing the design guidelines described in section 2.4.1 and the recommendations of the SMA connector manufacturer.
- DC blocking capacitor at ANT1 / ANT2 pins (C2, C3) must be placed in series to the 50 Ω RF line.
- The ANT_DET pin must be connected to the 50 Ω transmission line by means of a sense line.
- Choke inductors in series at the ANT_DET pin (L1, L2) must be placed so that one pad is on the 50 Ω transmission line and the other pad represents the start of the sense line to ANT_DET pin.
- The additional components (R1, C1, D1) on the ANT_DET line must be placed as ESD protection.
2.5 SIM interface

2.5.1.1 Guidelines for SIM circuit design

Guidelines for SIM cards, SIM connectors and SIM chips selection

The ISO/IEC 7816, the ETSI TS 102 221 and the ETSI TS 102 671 specifications define the physical, electrical and functional characteristics of Universal Integrated Circuit Cards (UICC) which contains the Subscriber Identification Module (SIM) integrated circuit that securely stores all the information needed to identify and authenticate subscribers over the cellular network.

Removable UICC / SIM card contacts mapping is defined by ISO/IEC 7816 and ETSI TS 102 221 as follows:

- Contact C1 = VCC (Supply) → It must be connected to VSIM
- Contact C2 = RST (Reset) → It must be connected to SIM_RST
- Contact C3 = CLK (Clock) → It must be connected to SIM_CLK
- Contact C4 = AUX1 (Auxiliary contact) → It must be left not connected
- Contact C5 = GND (Ground) → It must be connected to GND
- Contact C6 = VPP (Programming supply) → It can be left not connected
- Contact C7 = I/O (Data input/output) → It must be connected to SIM_IO
- Contact C8 = AUX2 (Auxiliary contact) → It must be left not connected

A removable SIM card can have 6 contacts (C1, C2, C3, C5, C6, C7) or 8 contacts, also including the auxiliary contacts C4 and C8. Only 6 contacts are required and must be connected to the module SIM interface.

Removable SIM cards are suitable for applications requiring a change of SIM card during the product lifetime.

A SIM card holder can have 6 or 8 positions if a mechanical card presence detector is not provided, or it can have 6+2 or 8+2 positions if two additional pins relative to the normally-open mechanical switch integrated in the SIM connector for the mechanical card presence detection are provided. Select a SIM connector providing 6+2 or 8+2 positions if the optional SIM detection feature is required by the custom application, otherwise a connector without an integrated mechanical presence switch can be selected.

Solderable UICC / SIM chip contact mapping (M2M UICC Form Factor) is defined by ETSI TS 102 671 as:

- Case pin 8 = UICC contact C1 = VCC (Supply) → It must be connected to VSIM
- Case pin 7 = UICC contact C2 = RST (Reset) → It must be connected to SIM_RST
- Case pin 6 = UICC contact C3 = CLK (Clock) → It must be connected to SIM_CLK
- Case pin 5 = UICC contact C4 = AUX1 (Aux.contact) → It must be left not connected
- Case pin 1 = UICC contact C5 = GND (Ground) → It must be connected to GND
- Case pin 2 = UICC contact C6 = VPP (Progr. supply) → It can be left not connected
- Case pin 3 = UICC contact C7 = I/O (Data I/O) → It must be connected to SIM_IO
- Case pin 4 = UICC contact C8 = AUX2 (Aux. contact) → It must be left not connected

A solderable SIM chip has 8 contacts and can also include the auxiliary contacts C4 and C8 for other uses, but only 6 contacts are required and must be connected to the module SIM card interface as described above.

Solderable SIM chips are suitable for M2M applications where it is not required to change the SIM once installed.
Guidelines for single SIM card connection without detection

A removable SIM card placed in a SIM card holder must be connected to the SIM card interface of LARA-R2 series modules as described in Figure 46, where the optional SIM detection feature is not implemented.

Follow these guidelines connecting the module to a SIM connector without SIM presence detection:

- Connect the UICC / SIM contacts C1 (VCC) to the VSIM pin of the module.
- Connect the UICC / SIM contact C7 (I/O) to the SIM_IO pin of the module.
- Connect the UICC / SIM contact C3 (CLK) to the SIM_CLK pin of the module.
- Connect the UICC / SIM contact C2 (RST) to the SIM_RST pin of the module.
- Connect the UICC / SIM contact C5 (GND) to ground.
- Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) at the SIM supply line (VSIM), close to the related pad of the SIM connector, to prevent digital noise.
- Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM line (VSIM, SIM_CLK, SIM_IO, SIM_RST), very close to each related pad of the SIM connector, to prevent RF coupling especially when the RF antenna is placed closer than 10 - 30 cm from the SIM card holder.
- Provide a low capacitance (i.e. less than 10 pF) ESD protection (e.g. Tyco Electronics PESD0402-140) on each externally accessible SIM line, close to each related pad of the SIM connector: the ESD sensitivity rating of the SIM interface pins is 1 kV (HBM), so that, according to the EMC/ESD requirements of the custom application, a higher protection level can be required if the lines are externally accessible on the application device.
- Limit the capacitance and series resistance on each signal of the SIM interface (SIM_CLK, SIM_IO, SIM_RST) to match the SIM interface specifications requirements (27.7 ns is the maximum allowed rise time on the SIM_CLK line, 1.0 µs is the maximum allowed rise time on the SIM_IO and SIM_RST lines).

![Figure 46: Application circuit for the connection to a single removable SIM card, with SIM detection not implemented](image_url)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C4</td>
<td>47 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H470JA01 - Murata</td>
</tr>
<tr>
<td>C5</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C104KA01 - Murata</td>
</tr>
<tr>
<td>D1, D2, D3, D4</td>
<td>Very Low Capacitance ESD Protection</td>
<td>PESD0402-140 - Tyco Electronics</td>
</tr>
<tr>
<td>J1</td>
<td>SIM Card Holder</td>
<td>Various Manufacturers, C707 10M006 136 2 - Amphenol</td>
</tr>
</tbody>
</table>

Table 36: Example of components for the connection to a single removable SIM card, with SIM detection not implemented
Guidelines for single SIM chip connection

A solderable SIM chip (M2M UICC Form Factor) must be connected to the SIM card interface of LARA-R2 series modules as described in Figure 47.

Follow these guidelines, connecting the module to a solderable SIM chip without SIM presence detection:

- Connect the UICC / SIM contacts C1 (VCC) to the VSIM pin of the module.
- Connect the UICC / SIM contact C7 (I/O) to the SIM_IO pin of the module.
- Connect the UICC / SIM contact C3 (CLK) to the SIM_CLK pin of the module.
- Connect the UICC / SIM contact C2 (RST) to the SIM_RST pin of the module.
- Connect the UICC / SIM contact C5 (GND) to ground.

- Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) at the SIM supply line (VSIM) close to the related pad of the SIM chip, to prevent digital noise.
- Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM line (VSIM, SIM_CLK, SIM_IO, SIM_RST), to prevent RF coupling especially in case the RF antenna is placed closer than 10 - 30 cm from the SIM card holder.
- Limit the capacitance and series resistance on each signal of the SIM interface (SIM_CLK, SIM_IO, SIM_RST) to match the SIM specifications requirements (27.7 ns is the max allowed rise time on the SIM_CLK line, 1.0 µs is the max allowed rise time on the SIM_IO and SIM_RST lines).

Figure 47: Application circuit for the connection to a single solderable SIM chip, with SIM detection not implemented

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C4</td>
<td>47 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555C1H470JA01 - Murata</td>
</tr>
<tr>
<td>C5</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C104KA01 - Murata</td>
</tr>
<tr>
<td>U1</td>
<td>SIM chip (M2M UICC Form Factor)</td>
<td>Various Manufacturers</td>
</tr>
</tbody>
</table>

Table 37: Example of components for the connection to a single solderable SIM chip, with SIM detection not implemented
Guidelines for single SIM card connection with detection

A removable SIM card placed in a SIM card holder must be connected to the SIM card interface of LARA-R2 series modules as described in Figure 48, where the optional SIM card detection feature is implemented.

Follow these guidelines connecting the module to a SIM connector implementing SIM detection:

- Connect the UICC / SIM contacts C1 (VCC) to the VSIM pin of the module.
- Connect the UICC / SIM contact C7 (I/O) to the SIM_IO pin of the module.
- Connect the UICC / SIM contact C3 (CLK) to the SIM_CLK pin of the module.
- Connect the UICC / SIM contact C2 (RST) to the SIM_RST pin of the module.
- Connect the UICC / SIM contact C5 (GND) to ground.
- Connect one pin of the normally-open mechanical switch integrated in the SIM connector (e.g. the SW2 pin as described in Figure 48) to the GPIO5 input pin of the module.
- Connect the other pin of the normally-open mechanical switch integrated in the SIM connector (e.g. the SW1 pin as described in Figure 48) to the V_INT 1.8 V supply output of the module by means of a strong (e.g. 1 kΩ) pull-up resistor, as the R1 resistor in Figure 48.
- Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) at the SIM supply line (VSIM), close to the related pad of the SIM connector, to prevent digital noise.
- Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM line (VSIM, SIM_CLK, SIM_IO, SIM_RST), very close to each related pad of the SIM connector, to prevent RF coupling especially in case the RF antenna is placed closer than 10 - 30 cm from the SIM card holder.
- Provide a low capacitance (i.e. less than 10 pF) ESD protection (e.g. Tyco Electronics PESD0402-140) on each externally accessible SIM line, close to each related pad of the SIM connector: the ESD sensitivity rating of SIM interface pins is 1 kV (HBM according to JESD22-A114), so that, according to the EMC/ESD requirements of the custom application, higher protection level can be required if the lines are externally accessible.
- Limit the capacitance and series resistance on each SIM signal to match the SIM specifications (27.7 ns = max rise time on SIM_CLK, 1.0 µs = max rise time on SIM_IO and SIM_RST).

![Figure 48: Application circuit for the connection to a single removable SIM card, with SIM detection implemented](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C4</td>
<td>47 pF Capacitor Ceramic C0G 0402 5% 50 V</td>
<td>GRM1555CH470JA01 - Murata</td>
</tr>
<tr>
<td>C5</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C104KA01 - Murata</td>
</tr>
<tr>
<td>D1 – D6</td>
<td>Very Low Capacitance ESD Protection</td>
<td>PESD0402-140 - Tyco Electronics</td>
</tr>
<tr>
<td>R1</td>
<td>1 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-071KL - Yageo Phycomp</td>
</tr>
<tr>
<td>R2</td>
<td>470 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-07470KL - Yageo Phycomp</td>
</tr>
<tr>
<td>J1</td>
<td>SIM Card Holder</td>
<td>CCM03-3013LFT R102 - C&K Components</td>
</tr>
</tbody>
</table>

Table 38: Example of components for the connection to a single removable SIM card, with SIM detection implemented
Guidelines for dual SIM card / chip connection

Two SIM cards / chips can be connected to LARA-R2 series modules’ SIM interface as in Figure 49. LARA-R2 series modules do not support the usage of two SIMs at the same time, but two SIMs can be populated on the application board, providing a proper switch to connect only the first or only the second SIM at a time to the SIM interface of the modules, as described in Figure 49.

LARA-R2 series modules support SIM hot insertion / removal on the GPIO5 pin, to enable / disable SIM interface upon detection of external SIM card physical insertion / removal: if the feature is enabled using the specific AT commands (see sections 1.8.2 and 1.12, and the u-blox AT commands manual [2], +UGPIOC, +UDCONF=50 commands), the switch from the first SIM to the second SIM can be properly done when a Low logic level is present on the GPIO5 pin (“SIM not inserted” = SIM interface not enabled), without the necessity of a module re-boot, so that the SIM interface will be re-enabled by the module to use the second SIM when a high logic level is re-applied on the GPIO5.

In the application circuit example represented in Figure 49, the application processor will drive the SIM switch using its own GPIO to properly select the SIM that is used by the module. Another GPIO may be used to handle the SIM hot insertion / removal function of LARA-R2 series modules, which can also be handled by other external circuits or by the cellular module GPIO according to the application requirements.

The dual SIM connection circuit described in Figure 49 can be implemented for SIM chips as well, providing proper connection between SIM switch and SIM chip as described in Figure 47.

If it is required to switch between more than 2 SIM, a circuit similar to the one described in Figure 49 can be implemented: for a 4 SIM circuit, using proper 4-throw switch instead of the suggested 2-throw switches.

Follow these guidelines connecting the module to two SIM connectors:

- Use a proper low on resistance (i.e. few ohms) and low on capacitance (i.e. few pF) 2-throw analog switch (e.g. Fairchild FSA2567) as SIM switch to ensure high-speed data transfer according to SIM requirements.
- Connect the contacts C1 (VCC) of the two UICC / SIM to the VSIM pin of the module by means of a proper 2-throw analog switch (e.g. Fairchild FSA2567).
- Connect the contact C7 (I/O) of the two UICC / SIM to the SIM_IO pin of the module by means of a proper 2-throw analog switch (e.g. Fairchild FSA2567).
- Connect the contact C3 (CLK) of the two UICC / SIM to the SIM_CLK pin of the module by means of a proper 2-throw analog switch (e.g. Fairchild FSA2567).
- Connect the contact C2 (RST) of the two UICC / SIM to the SIM_RST pin of the module by means of a proper 2-throw analog switch (e.g. Fairchild FSA2567).
- Connect the contact C5 (GND) of the two UICC / SIM to ground.
- Provide a 100 nF bypass capacitor (e.g. Murata GRM155R71C104K) at the SIM supply line (VSIM), close to the related pad of the two SIM connectors, to prevent digital noise.
- Provide a bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) on each SIM line (VSIM, SIM_CLK, SIM_IO, SIM_RST), very close to each related pad of the two SIM connectors, to prevent RF coupling especially in case the RF antenna is placed closer than 10 - 30 cm from the SIM card holders.
- Provide a very low capacitance (i.e. less than 10 pF) ESD protection (e.g. Tyco Electronics PESD0402-140) on each externally accessible SIM line, close to each related pad of the two SIM connectors, according to the EMC/ESD requirements of the custom application.
- Limit capacitance and series resistance on each SIM signal to match the SIM specifications (27.7 ns = max rise time on SIM_CLK, 1.0 µs = max rise time on SIM_IO and SIM_RST).
2.5.1.2 Guidelines for SIM layout design

The layout of the SIM card interface lines (VSIM, SIM_CLK, SIM_IO, SIM_RST) may be critical if the SIM card is placed far away from the LARA-R2 series modules or in close proximity to the RF antenna: these two cases should be avoided or at least mitigated as described below.

In the first case, the long connection can cause the radiation of some harmonics of the digital data frequency as any other digital interface: keep the traces short and avoid coupling with RF line or sensitive analog inputs.

In the second case, the same harmonics can be picked up and create self-interference that can reduce the sensitivity of cellular receiver channels whose carrier frequency is coincidental with harmonic frequencies: placing the RF bypass capacitors suggested in Figure 48 near the SIM connector will mitigate the problem.

In addition, since the SIM card is typically accessed by the end user, it can be subjected to ESD discharges: add adequate ESD protection as suggested in Figure 48 to protect the module SIM pins near the SIM connector.

Limit the capacitance and series resistance on each SIM signal to match the SIM specifications: the connections should always be kept as short as possible.

Avoid coupling with any sensitive analog circuit, since the SIM signals can cause the radiation of some harmonics of the digital data frequency.

Table 39: Example of components for the connection to two removable SIM cards, with SIM detection not implemented

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 – C4, C6 – C9</td>
<td>33 pF Capacitor Ceramic C0G 0402 5% 25 V</td>
<td>GRM155S1H330JZ01 - Murata</td>
</tr>
<tr>
<td>C5, C10, C11</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C104KA01 - Murata</td>
</tr>
<tr>
<td>D1 – D8</td>
<td>Very Low Capacitance ESD Protection</td>
<td>PESD0402-140 - Tyco Electronics</td>
</tr>
<tr>
<td>R1</td>
<td>47 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0747KL - Yageo Phycomp</td>
</tr>
<tr>
<td>J1, J2</td>
<td>SIM Card Holder</td>
<td>Various Manufacturers, C707 10M006 136 2 - Amphenol</td>
</tr>
<tr>
<td>U1</td>
<td>4PDT Analog Switch, with Low On-Capacitance and Low On-Resistance</td>
<td>FSA2567 - Fairchild Semiconductor</td>
</tr>
</tbody>
</table>

Figure 49: Application circuit for the connection to two removable SIM cards, with SIM detection not implemented

UBX-16010573 - R16 Design-in Page 102 of 160
2.6 Data communication interfaces

2.6.1 UART interface

2.6.1.1 Guidelines for UART circuit design

Providing the full RS-232 functionality (using the complete V.24 link)

If RS-232 compatible signal levels are needed, two different external voltage translators can be used to provide full RS-232 (9 lines) functionality: e.g. using the Texas Instruments SN74AVC8T245PW for the translation from 1.8 V to 3.3 V, and the Maxim MAX3237E for the translation from 3.3 V to RS-232 compatible signal level.

If a 1.8 V Application Processor (DTE) is used and complete RS-232 functionality is required, then the complete 1.8 V UART interface of the module (DCE) should be connected to a 1.8 V DTE, as described in Figure 50.

![UART interface application circuit with complete V.24 link in DTE/DCE serial communication (1.8 V DTE)](image)

If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART interface of the module (DCE) by means of appropriate unidirectional voltage translators using the module V_INT output as a 1.8 V supply for the voltage translators on the module side, as illustrated in Figure 51.

![UART interface application circuit with complete V.24 link in DTE/DCE serial communication (3.0 V DTE)](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C4</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A104KA01 - Murata</td>
</tr>
<tr>
<td>U1, U2</td>
<td>Unidirectional Voltage Translator</td>
<td>SN74AVC4T774(^{10}) - Texas Instruments</td>
</tr>
</tbody>
</table>

\(^{10}\) Voltage translator providing partial power down feature so that the 3 V supply can be ramped up before V_INT 1.8 V supply

Table 40: Component for UART application circuit with complete V.24 link in DTE/DCE serial communication (3.0 V DTE)
Providing the TXD, RXD, RTS, CTS and DTR lines only (not using the complete V.24 link)

If the functionality of the DSR, DCD and RI lines is not required, or the lines are not available:

- Leave the DSR, DCD and RI lines of the module floating, with a test-point on DCD.

If RS-232 compatible signal levels are needed, two different external voltage translators (e.g. Maxim MAX3237E and Texas Instruments SN74AVC4T774) can be used. The Texas Instruments chips provide the translation from 1.8 V to 3.3 V, while the Maxim chip provides the translation from 3.3 V to RS-232 compatible signal level.

Figure 52 illustrates the circuit that should be implemented as if a 1.8 V Application Processor (DTE) is used, given that the DTE will behave properly regardless of the DSR input setting.

If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART interface of the module (DCE) by means of appropriate unidirectional voltage translators using the module V_INT output as a 1.8 V supply for the voltage translators on the module side, as described in Figure 53, given that the DTE will behave properly regardless of the DSR input setting.

Figure 52: UART interface application circuit with partial V.24 link (6-wire) in the DTE/DCE serial communication (1.8 V DTE)

Figure 53: UART interface application circuit with partial V.24 link (6-wire) in DTE/DCE serial communication (3.0 V DTE)

Table 41: Parts for UART application circuit with partial V.24 link (6-wire) in DTE/DCE serial communication (3.0 V DTE)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3, C4</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A104KA01 - Murata</td>
</tr>
<tr>
<td>U1</td>
<td>Unidirectional Voltage Translator</td>
<td>SN74AVC4T774<sup>20</sup> - Texas Instruments</td>
</tr>
<tr>
<td>U2</td>
<td>Unidirectional Voltage Translator</td>
<td>SN74AVC2T245<sup>20</sup> - Texas Instruments</td>
</tr>
</tbody>
</table>

²⁰ Voltage translator providing partial power down feature so that the 3 V supply can be ramped up before V_INT 1.8 V supply
Providing the TXD, RXD, RTS and CTS lines only (not using the complete V.24 link)

- Connect the module DTR input to GND using a 0 Ω series resistor, since it may be useful to set DTR active if not specifically handled (see the u-blox AT commands manual [2], &D, S0, +CSGT, +CNMI AT commands)
- Leave the DSR, DCD and RI lines of the module floating, with a test-point on DCD

If RS-232 compatible signal levels are needed, the Maxim MAX13234E voltage level translator can be used. This chip translates voltage levels from 1.8 V (module side) to the RS-232 standard.

If a 1.8 V Application Processor is used, the circuit should be implemented as described in Figure 54.

If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART interface of the module (DCE) by means of appropriate unidirectional voltage translators using the module V_INT output as 1.8 V supply for the voltage translators on the module side, as described in Figure 55.

Table 42: Parts for UART application circuit with partial V.24 link (5-wire) in DTE/DCE serial communication (3.0 V DTE)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A104KA01 - Murata</td>
</tr>
<tr>
<td>U1</td>
<td>Unidirectional Voltage Translator</td>
<td>SN74AVC4T774²¹ - Texas Instruments</td>
</tr>
</tbody>
</table>

²¹ Voltage translator providing partial power down feature so that the 3 V supply can be ramped up before V_INT 1.8 V supply
Providing the TXD and RXD lines only (not using the complete V24 link)

If the functionality of the CTS, RTS, DSR, DCD, RI and DTR lines is not required in the application, or the lines are not available:

- Connect the module RTS input line to GND or to the CTS output line of the module: since the module requires RTS active (low electrical level) if HW flow-control is enabled (AT&K3, which is the default setting).
- Connect the module DTR input to GND using a 0Ω series resistor, since it may be useful to set DTR active if not specifically handled (see the u-blox AT commands manual [2], &D, S0, +CSGT, +CNMI AT commands)
- Leave the DSR, DCD and RI lines of the module floating, with a test-point on DCD

If RS-232 compatible signal levels are needed, the Maxim MAX13234E voltage level translator can be used. This chip translates voltage levels from 1.8 V (module side) to the RS-232 standard.

If a 1.8 V Application Processor (DTE) is used, the circuit that should be implemented as described in Figure 56:

![Figure 56: UART interface application circuit with partial V.24 link (3-wire) in the DTE/DCE serial communication (1.8 V DTE)](image)

If a 3.0 V Application Processor (DTE) is used, then it is recommended to connect the 1.8 V UART interface of the module (DCE) by means of appropriate unidirectional voltage translators using the module V_INT output as 1.8 V supply for the voltage translators on the module side, as described in Figure 57.

![Figure 57: UART interface application circuit with partial V.24 link (3-wire) in DTE/DCE serial communication (3.0 V DTE)](image)

Table 43: Parts for UART application circuit with partial V.24 link (3-wire) in DTE/DCE serial communication (3.0 V DTE)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A104KA01 - Murata</td>
</tr>
<tr>
<td>U1</td>
<td>Unidirectional Voltage Translator</td>
<td>SN74AVC2T24522 - Texas instruments</td>
</tr>
</tbody>
</table>

22 Voltage translator providing partial power down feature so that the 3 V supply can be ramped up before V_INT 1.8 V supply
Additional considerations

If a 3.0 V Application Processor (DTE) is used, the voltage scaling from any 3.0 V output of the DTE to the apposite 1.8 V input of the module (DCE) can be implemented, as an alternative low-cost solution, by means of an appropriate voltage divider. Consider the value of the pull-up integrated at the input of the module (DCE) for the correct selection of the voltage divider resistance values and mind that any DTE signal connected to the module must be tri-stated or set low when the module is in power-down mode and during the module power-on sequence (at least until the activation of the \texttt{V_INT} supply output of the module), to avoid latch-up of circuits and allow a proper boot of the module (see the remark below).

Moreover, the voltage scaling from any 1.8 V output of the cellular module (DCE) to the apposite 3.0 V input of the Application Processor (DTE) can be implemented by means of an appropriate low-cost non-inverting buffer with open drain output. The non-inverting buffer should be supplied by the \texttt{V_INT} supply output of the cellular module. Consider the value of the pull-up integrated at each input of the DTE (if any) and the baud rate required by the application for the appropriate selection of the resistance value for the external pull-up biased by the application processor supply rail.

☞ If power saving is enabled, the application circuit with the \texttt{TXD} and \texttt{RXD} lines only is not recommended. During command mode, the DTE must send to the module a wake-up character or a dummy “AT” before each command line (see section 1.9.1.4 for the complete description), but during data mode, the wake-up character or the dummy “AT” would affect the data communication.

☞ Do not apply voltage to any UART interface pin before the switch-on of the UART supply source (\texttt{V_INT}), to avoid latch-up of circuits and allow a proper boot of the module. If the external signals connected to the cellular module cannot be tri-stated or set low, insert a multi-channel digital switch (e.g. TI SN74CB3Q16244, TSSA3159, or TSSA63157) between the two-circuit connections and set to high impedance before \texttt{V_INT} switch-on.

☞ The ESD sensitivity rating of the UART interface pins is 1 kV (Human Body Model according to JESD22-A114). A higher protection level could be required if the lines are externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to the accessible points.

☞ If the UART interface pins are not used, they can be left unconnected on the application board, but it is recommended to provide accessible test points directly connected to the \texttt{TXD}, \texttt{RXD}, \texttt{DTR} and \texttt{DCD} pins for diagnostic purposes, in particular providing a 0 \(\Omega\) series jumper on each line to detach each UART pin of the module from the DTE application processor.

2.6.1.2 Guidelines for UART layout design

The UART serial interface requires the same considerations regarding electro-magnetic interference as any other digital interface. Keep the traces short and avoid coupling with RF line or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency.
2.6.2 USB interface

2.6.2.1 Guidelines for USB circuit design

The **USB_D+** and **USB_D-** lines carry the USB serial data and signaling. The lines are used in single-ended mode for full speed signaling handshake, as well as in differential mode for high speed signaling and data transfer.

USB pull-up or pull-down resistors and external series resistors on **USB_D+** and **USB_D-** lines as required by the USB 2.0 specification [9] are part of the module USB pins driver and do not need to be externally provided.

The USB interface of the module is enabled only if a valid high logic level is detected by the **VUSB_DET** input (see the LARA-R2 series data sheet [1]). Neither the USB interface, nor the whole module is supplied by the **VUSB_DET** input: the **VUSB_DET** senses the USB supply voltage and absorbs few microamperes.

Routing the USB pins to a connector, they will be externally accessible on the application device. According to the EMC/ESD requirements of the application, an additional ESD protection device with very low capacitance should be provided close to the accessible point on the line connected to this pin, as described in [Figure 58](#) and [Table 44](#).

Figure 58: USB Interface application circuits

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R61A104KA01 - Murata</td>
</tr>
<tr>
<td>D1, D2, D3</td>
<td>Very Low Capacitance ESD Protection</td>
<td>PESD0402-140 - Tyco Electronics</td>
</tr>
</tbody>
</table>

Table 44: Component for USB application circuits

- If the USB interface pins are not used, they can be left unconnected on the application board, but it is recommended to provide accessible test points directly connected to the **VUSB_DET**, **USB_D+**, **USB_D-** pins.

> ESD sensitivity rating of USB interface pins is 1 kV (Human Body Model as per JESD22-A114F). A higher protection level could be required if the lines are externally accessible and it can be achieved by mounting a very low capacitance (i.e. less or equal to 1 pF) ESD protection (e.g. Tyco Electronics PESD0402-140 ESD protection device) on the lines connected to these pins, close to accessible points.

The USB pins of the modules can be directly connected to the USB host application processor without additional ESD protections if they are not externally accessible or according to EMC/ESD requirements.
2.6.2.2 Guidelines for USB layout design

The USB_D+/USB_D- lines require accurate layout design to achieve reliable signaling at the high speed data rate (up to 480 Mb/s) supported by the USB serial interface. The characteristic impedance of the USB_D+/USB_D- lines is specified by the Universal Serial Bus Revision 2.0 specification [9]. The most important parameter is the differential characteristic impedance applicable for the odd-mode electromagnetic field, which should be as close as possible to 90 Ω differential. Signal integrity may be degraded if the PCB layout is not optimal, especially when the USB signaling lines are very long.

Use the following general routing guidelines to minimize signal quality problems:

- Route USB_D+/USB_D- lines as a differential pair.
- Route USB_D+/USB_D- lines as short as possible.
- Ensure the differential characteristic impedance (Z₀) is as close as possible to 90 Ω.
- Ensure the common mode characteristic impedance (Z_CM) is as close as possible to 30 Ω.
- Consider design rules for USB_D+/USB_D- similar to RF transmission lines, these being coupled differential micro-strip or buried stripline: avoid any stubs, abrupt change of layout, and route on clear PCB area.
- Avoid coupling with any RF line or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency.

Figure 59 and Figure 60 provide two examples of coplanar waveguide designs with differential characteristic impedance close to 90 Ω and common mode characteristic impedance close to 30 Ω. The first transmission line can be implemented for a 4-layer PCB stack-up herein described, the second transmission line can be implemented for a 2-layer PCB stack-up herein described.
2.6.3 HSIC interface

2.6.3.1 Guidelines for HSIC circuit design

The HSIC interface is not supported by the "02", "62" and "82" product versions except for diagnostic purposes.

LARA-R2 series modules include a USB High-Speed Inter-Chip compliant interface with a maximum 480 Mb/s data rate according to the High-Speed Inter-Chip USB Electrical Specification Version 1.0 [10] and USB Specification Revision 2.0 [9]. The module itself acts as a device and can be connected to any compatible host.

The HSIC interface consists of a bi-directional DDR data line (HSIC_DATA) for transmitting and receiving data synchronously with the bi-directional strobe line (HSIC_STRB), intended to be directly connected to the Data and Strobe pins of the compatible USB High-Speed Inter-Chip host mounted on the same PCB of the LARA-R2 series module, without using connectors / cables, as described in Figure 61.

The modules include also the HOST_SELECT pin to select the module / host application processor configuration: the pin is available to select, enable, connect, disconnect and subsequently re-connect the HSIC interface.

Further guidelines for HSIC interface circuit design will be described in detail in a successive release of the System Integration Manual.

ESD sensitivity rating of HSIC interface pins is 1 kV (HBM as per JESD22-A114). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points.

If the HSIC interface pins are not used, they can be left unconnected on the application board, but it is recommended to provide accessible test points directly connected to the HSIC_DATA and HSIC_STRB pins.
2.6.3.2 Guidelines for HSIC layout design

HSIC lines require accurate layout design to achieve reliable signaling at high speed data rates (up to 480 Mb/s), as supported by the HSIC serial interface: signal integrity may be degraded if the PCB layout is not optimal, especially when the HSIC lines are very long.

The characteristic impedance of the HSIC_DATA and HSIC_STRB lines must be as close as possible to 50 Ω, as specified by the High-Speed Inter-Chip USB Electrical Specification Version 1.0 [10].

Use the following general routing guidelines to minimize signal quality problems:

- Route HSIC_DATA and HSIC_STRB lines as short as possible.
- The HSIC interface is only recommended for an intra-board interconnect. The connection should be point-to-point. Connectors and cables are not recommended.
- HSIC_DATA and HSIC_STRB lines must be matched in length to within 10 mils.
- Ensure the characteristic impedance of HSIC_DATA and HSIC_STRB lines is as close as possible to 50 Ω.
- HSIC_DATA and HSIC_STRB signals are not differential signals and should not be routed as such.
- Consider design rules for HSIC_DATA and HSIC_STRB lines similar to RF transmission lines, routing them as micro-strips (conducting strips separated from ground plane by dielectric material) or striplines (flat strips of metal sandwiched between two parallel ground planes within a dielectric material).
- Avoid any stubs, abrupt change of layout, and route on clear PCB area.
- Avoid coupling with any RF line or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency.

Figure 42 and Figure 43 provide two examples of proper 50 Ω coplanar waveguide designs. The first example of the RF transmission line can be implemented for a 4-layer PCB stack-up herein described, and the second example of the RF transmission line can be implemented for a 2-layer PCB stack-up herein described.

If the two examples do not match the application PCB layup, the 50 Ω characteristic impedance calculation can be made using the HFSS commercial finite element method solver for electromagnetic structures from Ansys Corporation, or using freeware tools like Avago / Broadcom AppCAD (https://www.broadcom.com/appcad), taking care of the approximation formulas used by the tools for the impedance computation.

To achieve a 50 Ω characteristic impedance, the width of the transmission line must be chosen depending on:

- the thickness of the transmission line itself (e.g. 35 µm in the example of Figure 42 and Figure 43)
- the thickness of the dielectric material between the top layer (where the transmission line is routed) and the inner closer layer implementing the ground plane (e.g. 270 µm in Figure 42, 1510 µm in Figure 43)
- the dielectric constant of the dielectric material (e.g. dielectric constant of the FR-4 dielectric material in Figure 42 and Figure 43)
- the gap from the transmission line to the adjacent ground plane on the same layer of the transmission line (e.g. 500 µm in Figure 42, 400 µm in Figure 43)

If the distance between the transmission line and the adjacent GND area (on the same layer) does not exceed 5 times the track width of the micro strip, use the “Coplanar Waveguide” model for the 50 Ω calculation.
2.6.4 DDC (I2C) interface

2.6.4.1 Guidelines for DDC (I2C) circuit design

General considerations

Warning: Communication with u-blox GNSS receivers over DDC (I2C) is not supported by the LARA-R204-02B and LARA-R211-02B-00 product versions.

The “GNSS RTC sharing” function is not supported by the “02”, “62” and “82” product versions.

The DDC I2C-bus master interface can be used to communicate with u-blox GNSS receivers and other external I2C-bus slaves as an audio codec. Beside the general considerations explained below, see:

- the following parts of this section for specific guidelines for the connection to u-blox GNSS receivers.
- section 2.7.1 for an application circuit example with an external audio codec I2C-bus slave.

To be compliant to the I2C-bus specifications, the module bus interface pins are open drain output and pull-up resistors must be mounted externally. Resistor values must conform to I2C bus specifications [11]: for example, 4.7 kΩ resistors can be commonly used. Pull-ups must be connected to a supply voltage of 1.8 V (typical), since this is the voltage domain of the DDC pins which are not tolerant to higher voltage values (e.g. 3.0 V).

Connect the DDC (I2C) pull-ups to the V_INT 1.8 V supply source, or another 1.8 V supply source enabled after V_INT (e.g. as the GNSS 1.8 V supply present in Figure 62 application circuit), as any external signal connected to the DDC (I2C) interface must not be set high before the switch-on of the V_INT supply of the DDC (I2C) pins, to avoid latch-up of circuits and permit a proper boot of the module.

The signal shape is defined by the values of the pull-up resistors and the bus capacitance. Long wires on the bus increase the capacitance. If the bus capacitance is increased, use pull-up resistors with a nominal resistance value lower than 4.7 kΩ, to match the I2C bus specifications [11] regarding the rise and fall times of the signals.

Capacitance and series resistance must be limited on the bus to match the I2C specifications (1.0 µs is the maximum allowed rise time on the SCL and SDA lines): route connections as short as possible.

The ESD sensitivity rating of the DDC (I2C) pins is 1 kV (Human Body Model as per JESD22-A114). A higher protection level could be required if the lines are externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points.

If the pins are not used as DDC bus interface, they can be left unconnected.
Connection with u-blox 1.8 V GNSS receivers

Figure 62 shows an application circuit for connecting the cellular module to a u-blox 1.8 V GNSS receiver:

- The SDA and SCL pins of the cellular module are directly connected to the related pins of the u-blox 1.8 V GNSS receiver, with appropriate pull-up resistors connected to the 1.8 V GNSS supply enabled after the V_INT supply of the I2C pins of the cellular module.
- The GPIO2 pin is connected to the active-high enable pin of the voltage regulator that supplies the u-blox 1.8 V GNSS receiver providing the “GNSS supply enable” function. A pull-down resistor is provided to avoid a switch-on of the positioning receiver when the cellular module is switched off or in the reset state.
- The GPIO3 and GPIO4 pins are directly connected respectively to the TXD1 and EXTINT0 pins of the u-blox 1.8 V GNSS receiver providing “GNSS Tx data ready” and “GNSS RTC sharing” functions.
- The V_BCKP supply output of the cellular module is connected to the V_BCKP backup supply input pin of the GNSS receiver to provide the supply for the GNSS real time clock and backup RAM when the VCC supply of the cellular module is within its operating range and the VCC supply of the GNSS receiver is disabled. This enables the u-blox GNSS receiver to recover from a power breakdown with either a hot start or a warm start (depending on the actual duration of the GNSS VCC outage) and to maintain the configuration settings saved in the backup RAM.

![Application circuit for connecting LARA-R2 series modules to u-blox 1.8 V GNSS receivers](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2</td>
<td>4.7 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-074K7L - Yageo Phycomp</td>
</tr>
<tr>
<td>R3</td>
<td>47 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0747KL - Yageo Phycomp</td>
</tr>
<tr>
<td>U1</td>
<td>Voltage Regulator for GNSS receiver</td>
<td>See GNSS receiver Hardware Integration Manual</td>
</tr>
</tbody>
</table>

Table 45: Components for connecting LARA-R2 series modules to u-blox 1.8 V GNSS receivers
Figure 63 illustrates an alternative solution as a supply for u-blox 1.8 V GNSS receivers: the V_INT 1.8 V regulated supply output of the cellular module can be used to supply a u-blox 1.8 V GNSS receiver of the u-blox 6 generation (or any newer u-blox GNSS receiver generation) instead of using an external voltage regulator as shown in the previous Figure 62. The V_INT supply is able to support the maximum current consumption of these positioning receivers.

The internal switching step-down regulator that generates the V_INT supply is set to 1.8 V (typical) when the cellular module is switched on and it is disabled when the module is switched off.

The supply of the u-blox 1.8 V GNSS receiver can be switched off using an external p-channel MOSFET controlled by the GPIO2 pin by means of a proper inverting transistor as shown in Figure 63, implementing the “GNSS supply enable” function. If this feature is not required, the V_INT supply output can be directly connected to the u-blox 1.8 V GNSS receiver, so that it will be switched on when V_INT output is enabled.

According to V_INT supply voltage ripple characteristic specified in LARA-R2 series data sheet [1]:

- Additional filtering may be needed to properly supply an external LNA, depending on the characteristics of the used LNA, adding a series ferrite bead and a bypass capacitor (e.g. the Murata BLM15HD182SN1 ferrite bead and the Murata GRM1555C1H220J 22 pF capacitor) at the input of the external LNA supply line.

![Figure 63: Application circuit for connecting LARA-R2 series modules to u-blox 1.8 V GNSS receivers using V_INT as supply](image)

Table 46: Components for connecting LARA-R2 series modules to u-blox 1.8 V GNSS receivers using V_INT as supply

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2</td>
<td>4.7 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-074K7L - Yageo Phycomp</td>
</tr>
<tr>
<td>R3</td>
<td>47 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0747KL - Yageo Phycomp</td>
</tr>
<tr>
<td>R4</td>
<td>10 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0710KL - Yageo Phycomp</td>
</tr>
<tr>
<td>R5</td>
<td>100 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-07100KL - Yageo Phycomp</td>
</tr>
<tr>
<td>T1</td>
<td>P-Channel MOSFET Low On-Resistance</td>
<td>IRLML6401 - International Rectifier or NTZS3151P - ON Semi</td>
</tr>
<tr>
<td>T2</td>
<td>NPN BJT Transistor</td>
<td>BC847 - Infineon</td>
</tr>
<tr>
<td>C1</td>
<td>100 nF Capacitor Ceramic X7R 0402 10% 16 V</td>
<td>GRM155R71C104KA01 - Murata</td>
</tr>
</tbody>
</table>

For additional guidelines regarding the design of applications with u-blox 1.8 V GNSS receivers, see the GNSS implementation application note [22] and the Hardware Integration Manual of the u-blox GNSS receivers.
Connection with u-blox 3.0 V GNSS receivers

Figure 64 shows an application circuit for connecting the module to a u-blox 3.0 V GNSS receiver:

- As SDA and SCL pins of the cellular module are not tolerant up to 3.0 V, connection to the related I2C pins of the u-blox 3.0 V GNSS receiver must be provided using a proper I2C-bus Bidirectional Voltage Translator (e.g. TI TCA9406, providing the partial power down feature so that the GNSS 3.0 V supply can be ramped up before the V_INT 1.8 V cellular supply), with proper pull-up resistors.

- The GPIO2 is connected to the active-high enable pin of the voltage regulator that supplies the u-blox 3.0 V GNSS receiver providing the "GNSS supply enable" function. A pull-down resistor is provided to avoid a switch-on of the positioning receiver when the cellular module is switched off or in the reset state.

- As the GPIO3 and GPIO4 pins of the cellular module are not tolerant up to 3.0 V, the connection to the related pins of the u-blox 3.0 V GNSS receiver must be provided using a proper Unidirectional Voltage Translator (e.g. TI SN74AVC2T245, providing the partial power down feature so that the 3.0 V GNSS supply can be also ramped up before the V_INT 1.8 V cellular supply).

- The V_BCKP supply output of the cellular module can be directly connected to the V_BCKP backup supply input pin of the GNSS receiver as in the application circuit for a u-blox 1.8 V GNSS receiver.

![Application circuit for connecting LARA-R2 series modules to u-blox 3.0 V GNSS receivers](image)

Table 47: Components for connecting LARA-R2 series modules to u-blox 3.0 V GNSS receivers

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2, R4, R5</td>
<td>4.7 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-074K7L - Yageo Phycomp</td>
</tr>
<tr>
<td>R3</td>
<td>47 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0747KL - Yageo Phycomp</td>
</tr>
<tr>
<td>C2, C3, C4, C5</td>
<td>100 nF Capacitor Ceramic X5R 0402 10% 10V</td>
<td>GRM155R71C104KA01 - Murata</td>
</tr>
<tr>
<td>U1, C1</td>
<td>Voltage Regulator for GNSS receiver and related output bypass capacitor</td>
<td>See GNSS receiver Hardware Integration Manual</td>
</tr>
<tr>
<td>U2</td>
<td>I2C-bus Bidirectional Voltage Translator</td>
<td>TCA9406DCUR - Texas Instruments</td>
</tr>
<tr>
<td>U3</td>
<td>Generic Unidirectional Voltage Translator</td>
<td>SN74AVC2T245 - Texas Instruments</td>
</tr>
</tbody>
</table>

For additional guidelines regarding the design of applications with u-blox 3.0 V GNSS receivers, see GNSS implementation application note [22] and u-blox GNSS receivers Hardware Integration Manual.

2.6.4.2 Guidelines for DDC (I2C) layout design

The DDC (I2C) serial interface requires the same considerations regarding electro-magnetic interference as any other digital interface. Keep the traces short and avoid coupling with RF line or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency.
2.6.5 SDIO interface

2.6.5.1 Guidelines for SDIO circuit design

☞ The functionality of the SDIO Secure Digital Input Output interface pins is not supported by the LARA-R2 series modules "02", "62" and "82" product versions: the pins should not be driven by any external device.

LARA-R2 series modules include a 4-bit Secure Digital Input Output interface (SDIO_D0, SDIO_D1, SDIO_D2, SDIO_D3, SDIO_CLK, SDIO_CMD) designed to communicate with an external u-blox short range Wi-Fi module.

Combining a u-blox cellular module with a u-blox short range communication module gives designers full access to the Wi-Fi module directly via the cellular module, so that a second interface connected to the Wi-Fi module is not necessary. AT commands via the AT interfaces of the cellular module allow full control of the Wi-Fi module from any host processor, because Wi-Fi control messages are relayed to the Wi-Fi module via the dedicated SDIO interface.

☞ Further guidelines for SDIO interface circuit design will be described in detail in a successive release of the System Integration Manual.

☞ Do not apply voltage to any SDIO interface pin before the switch-on of SDIO interface supply source (V_INT), to avoid latch-up of circuits and allow a proper boot of the module.

☞ The ESD sensitivity rating of SDIO interface pins is 1 kV (HMB according to JESD22-A114). A higher protection level could be required if the lines are externally accessible and this can be achieved by mounting a very low capacitance ESD protection (e.g. Tyco Electronics PESD0402-140 ESD), close to the accessible points.

☞ If the SDIO interface pins are not used, they can be left unconnected on the application board.

2.6.5.2 Guidelines for SDIO layout design

The SDIO serial interface requires the same considerations regarding electro-magnetic interference as any other high speed digital interface.

Keep the traces short, avoid stubs and avoid coupling with RF lines / parts or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency.

Consider the usage of low value series damping resistors to avoid reflections and other losses in signal integrity, which may create ringing and loss of a square wave shape.
2.7 Audio interface

Audio is not supported by LARA-R204-02B and LARA-R220-62B versions.

2.7.1 Digital audio interface

2.7.1.1 Guidelines for digital audio circuit design

I2S digital audio interface can be connected to an external digital audio device for voice applications. Any external digital audio device compliant with the configuration of the digital audio interface of the LARA-R2 series cellular module can be used, given that the external digital audio device must provide:

- The opposite role: slave or master role, as LARA-R2 series modules may act as master or slave
- The same mode and frame format: PCM / short synch mode or Normal I2S / long synch mode with
 - data in 2’s complement notation, linear
 - MSB transmitted first
 - data word length = 16-bit (16 clock cycles)
 - frame length = synch signal period:
 - 17-bit or 18-bit in PCM / short alignment mode (16 + 1 or 16 + 2 clock cycles, with the Word Alignment / Synchronization signal set high for 1 clock cycle or 2 clock cycles)
 - 32-bit in Normal I2S mode / long alignment mode (16 x 2 clock cycles)
- The same sample rate, i.e. synch signal frequency, configurable by AT+UI2S <I2S_sample_rate> parameter
 - 8 kHz
 - 11.025 kHz
 - 12 kHz
 - 16 kHz
 - 22.05 kHz
 - 24 kHz
 - 32 kHz
 - 44.1 kHz
 - 48 kHz
- The same serial clock frequency:
 - 17 x <I2S_sample_rate> or 18 x <I2S_sample_rate> in PCM / short alignment mode, or
 - 16 x 2 x <I2S_sample_rate> in Normal I2S mode / long alignment mode
- Compatible voltage levels (1.80 V typ.), otherwise it is recommended to connect the 1.8 V digital audio interface of the module to the external 3.0 V (or similar) digital audio device by means of appropriate unidirectional voltage translators (e.g. TI SN74AVC4T774 or SN74AVC2T245, providing partial power down feature so that the digital audio device 3.0 V supply can be also ramped up before V_INT 1.8 V supply), using the module V_INT output as 1.8 V supply for the voltage translators on the module side

For the appropriate selection of a compliant external digital audio device, see section 1.10.1 and see the +UI2S AT command description in the u-blox AT commands manual [2] for further details regarding the capabilities and the possible settings of I2S digital audio interface of LARA-R2 series modules.

An appropriate specific application circuit must be implemented and configured according to the particular external digital audio device or audio codec used and according to the application requirements.

Examples of manufacturers offering compatible audio codec parts are the following:

- Maxim Integrated (as the MAX9860, MAX9867, MAX9880A audio codecs)
- Texas Instruments / National Semiconductor
Figure 65 and Table 48 describe an application circuit for the I2S digital audio interface providing basic voice capability using an external audio voice codec, in particular the Maxim MAX9860 audio codec.

- DAC and ADC integrated in the external audio codec respectively convert an incoming digital data stream to analog audio output through a mono amplifier and converts the microphone input signal to the digital bit stream over the digital audio interface,
- A digital side-tone mixer integrated in the external audio codec provides loopback of the microphones/ADC signal to the DAC/headphone output.
- The module’s I2S interface (I2S master) is connected to the related pins of the external audio codec (I2S slave).
- The GPIO6 of the LARA-R2 series module (that provides a suitable digital output clock) is connected to the clock input of the external audio codec to provide clock reference.
- The external audio codec is controlled by the LARA-R2 series module using the DDC (I2C) interface, which can concurrently communicate with other I2C devices and control an external audio codec.
- The V_INT output supplies the external audio codec, defining proper digital interfaces voltage level.
- Additional components are provided for EMC and ESD immunity conformity: a 10 nF bypass capacitor and a series chip ferrite bead noise/EMI suppression filter provided on each microphone line input and speaker line output of the external codec as described in Figure 65 and Table 48. The necessity of these or other additional parts for EMC improvement may depend on the specific application board design.

Specific AT commands are available to configure the Maxim MAX9860 audio codec: for more details, see the u-blox AT commands manual [2], +UEXTDCONF AT command.

As various external audio codecs other than the one described in Figure 65 and Table 48 can be used to provide voice capability, the appropriate specific application circuit must be implemented and configured according to the particular external digital audio device or audio codec used and according to the application requirements.

![Figure 65: I2S interface application circuit with an external audio codec to provide voice capability](image-url)
Table 48: Example of components for audio voice codec application circuit

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100 nF Capacitor Ceramic X5R 0402 10% 10V</td>
<td>GRM155R71C104KA01</td>
<td>Murata</td>
</tr>
<tr>
<td>C2, C4, C5, C6</td>
<td>1 μF Capacitor Ceramic X5R 0402 10% 6.3 V</td>
<td>GRM155R60J105KE19</td>
<td>Murata</td>
</tr>
<tr>
<td>C3</td>
<td>10 μF Capacitor Ceramic X5R 0603 20% 6.3 V</td>
<td>GRM188R60J106ME47</td>
<td>Murata</td>
</tr>
<tr>
<td>C7, C8, C9, C10</td>
<td>27 pF Capacitor Ceramic COG 0402 5% 25 V</td>
<td>GRM1555C1H270JZ01</td>
<td>Murata</td>
</tr>
<tr>
<td>C11, C12, C13, C14</td>
<td>10 nF Capacitor Ceramic X5R 0402 10% 50V</td>
<td>GRM155R71C103KA88</td>
<td>Murata</td>
</tr>
<tr>
<td>D1, D2</td>
<td>Low Capacitance ESD Protection</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EMI1, EMI2, EMI3, EMI4</td>
<td>Chip Ferrite Bead Noise/EMI Suppression Filter 1800 Ohm at 100 MHz, 2700 Ohm at 1 GHz</td>
<td>BLM15HD182SN1</td>
<td>Murata</td>
</tr>
<tr>
<td>J1</td>
<td>Microphone Connector</td>
<td>Various manufacturers</td>
<td></td>
</tr>
<tr>
<td>J2</td>
<td>Speaker Connector</td>
<td>Various manufacturers</td>
<td></td>
</tr>
<tr>
<td>MIC</td>
<td>2.2 kΩ Electret Microphone</td>
<td>Various manufacturers</td>
<td></td>
</tr>
<tr>
<td>R1, R2</td>
<td>4.7 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-074K7L</td>
<td>Yageo Phycomp</td>
</tr>
<tr>
<td>R3</td>
<td>10 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-0710KL</td>
<td>Yageo Phycomp</td>
</tr>
<tr>
<td>R4, R5</td>
<td>2.2 kΩ Resistor 0402 5% 0.1 W</td>
<td>RC0402JR-072K2L</td>
<td>Yageo Phycomp</td>
</tr>
<tr>
<td>SPK</td>
<td>32 Ω Speaker</td>
<td>Various manufacturers</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>16-Bit Mono Audio Voice Codec</td>
<td>MAX9860ETG+</td>
<td>Maxim</td>
</tr>
</tbody>
</table>

Do not apply voltage to any I2S pin before the switch-on of I2S supply source (V_INT), to avoid latch-up of circuits and allow a proper boot of the module. If the external signals connected to the cellular module cannot be tri-stated or set low, insert a multi-channel digital switch (e.g. TI SN74CB3Q16244, TS5A3159, or TS5A63157) between the two-circuit connections and set to high impedance before V_INT switch-on.

The ESD sensitivity rating of I2S interface pins is 1 kV (HBM according to JESD22-A114). A higher protection level could be required if the lines are externally accessible and it can be achieved by mounting a general purpose ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points.

If the I2S digital audio pins are not used, they can be left unconnected on the application board.

2.7.1.2 Guidelines for digital audio layout design

I2S interface and clock output lines require the same consideration regarding electro-magnetic interference as any other high speed digital interface. Keep the traces short and avoid coupling with RF lines / parts or sensitive analog inputs, since the signals can cause the radiation of some harmonics of the digital data frequency.

2.7.1.3 Guidelines for analog audio layout design

Accurate design of the analog audio circuit is very important to obtain clear and high quality audio. The GSM signal burst has a repetition rate of 217 Hz that lies in the audible range. A careful layout is required to reduce the risk of noise from audio lines due to both VCC burst noise coupling and RF detection.

General guidelines for the uplink path (microphone), which is commonly the most sensitive, are the following:

- Avoid coupling of any noisy signal to microphone lines: it is strongly recommended to route microphone lines away from the module VCC supply line, any switching regulator line, RF antenna lines, digital lines and any other possible noise source.
- Avoid coupling between the microphone and speaker / receiver lines.
- Optimize the mechanical design of the application device, the position, orientation and mechanical fixing (for example, using rubber gaskets) of microphone and speaker parts in order to avoid echo interference between the uplink path and downlink path.

- Keep ground separation from microphone lines to other noisy signals. Use an intermediate ground layer or vias wall for coplanar signals.

- For an external audio device providing differential microphone input, route the microphone signal lines as a differential pair embedded in ground to reduce differential noise pick-up. The balanced configuration will help reject the common mode noise.

- Cross other signals lines on adjacent layers with 90° crossing.

- Place bypass capacitor for RF very close to the active microphone. The preferred microphone should be designed for GSM applications which typically have an internal built-in bypass capacitor for RF very close to active device. If the integrated FET detects the RF burst, the resulting DC level will be in the pass-band of the audio circuitry and cannot be filtered by any other device.

General guidelines for the downlink path (speaker / receiver) are the following:

- The physical width of the audio output lines on the application board must be wide enough to minimize series resistance since the lines are connected to low impedance speaker transducers.

- Avoid coupling of any noisy signal to speaker lines: it is recommended to route speaker lines away from the module VCC supply line, any switching regulator line, RF antenna lines, digital lines and any other possible noise source.

- Avoid coupling between speaker / receiver and microphone lines.

- Optimize the mechanical design of the application device, the position, orientation and mechanical fixing (for example, using rubber gaskets) of speaker and microphone parts in order to avoid echo interference between the downlink path and uplink path.

- For an external audio device providing differential speaker / receiver output, route the speaker signal lines as a differential pair embedded in ground up to reduce differential noise pick-up. The balanced configuration will help reject the common mode noise.

- Cross other signals lines on adjacent layers with 90° crossing.

- Place the bypass capacitor for RF close to the speaker.
2.8 General Purpose Input/Output (GPIO)

2.8.1.1 Guidelines for GPIO circuit design

A typical usage of LARA-R2 series modules’ GPIOs can be the following:

- Network indication provided over GPIO1 pin (see Figure 66 / Table 49 below)
- GNSS supply enable function provided by the GPIO2 pin (see section 2.6.4)
- GNSS Tx data ready function provided by the GPIO3 pin (see section 2.6.4)
- GNSS RTC sharing function provided by the GPIO4 pin (see section 2.6.4)
- SIM card detection provided over the GPIO5 pin (see Figure 48 / Table 38 in section 2.5)

![LARA-R2 series GPIO circuit diagram]

Figure 66: Application circuit for network indication provided over GPIO1

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Part number - manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>10 kΩ Resistor 0402 5% 0.1 W</td>
<td>Various manufacturers</td>
</tr>
<tr>
<td>R2</td>
<td>47 kΩ Resistor 0402 5% 0.1 W</td>
<td>Various manufacturers</td>
</tr>
<tr>
<td>R3</td>
<td>820 Ω Resistor 0402 5% 0.1 W</td>
<td>Various manufacturers</td>
</tr>
<tr>
<td>DL1</td>
<td>LED Red SMT 0603</td>
<td>LTST-C190KRT - Lite-on Technology Corporation</td>
</tr>
<tr>
<td>T1</td>
<td>NPN BJT Transistor</td>
<td>BC847 - Infineon</td>
</tr>
</tbody>
</table>

Table 49: Components for network indication application circuit

- Use transistors with at least an integrated resistor in the base pin or otherwise put a 10 kΩ resistor on the board in series to the GPIO of LARA-R2 series modules.
- Do not apply voltage to any GPIO of the module before the switch-on of the GPIOs supply (V_INT), to avoid latch-up of circuits and allow a proper module boot. If the external signals connected to the module cannot be tri-stated or set low, insert a multi-channel digital switch (e.g. TI SN74CB3Q16244, TS5A3159, TS5A63157) between the two-circuit connections and set to high impedance before V_INT switch-on.
- ESD sensitivity rating of the GPIO pins is 1 kV (HBM according to JESD22-A114). Higher protection level could be required if the lines are externally accessible and it can be achieved by mounting an ESD protection (e.g. EPCOS CA05P4S14THSG varistor array) close to accessible points.
- If the GPIO pins are not used, they can be left unconnected on the application board.

2.8.1.2 Guidelines for GPIO layout design

The general purpose input/output pins are generally not critical for layout.
2.9 Reserved pins (RSVD)

LARA-R2 series modules have pins reserved for future use, marked as RSVD. All the RSVD pins are to be left unconnected on the application board except the following RSVD pin, as described in Figure 67:

- the RSVD pin number 33 that must be externally connected to ground

![Figure 67: Application circuit for the reserved pins (RSVD)]

2.10 Module placement

Optimize placement for a minimum length of RF line and a closer path from the DC source for VCC.

Make sure that the module, RF and analog parts / circuits are clearly separated from any possible source of radiated energy, including digital circuits that can radiate some digital frequency harmonics, which can produce Electro-Magnetic Interference affecting module, RF and analog parts / circuits’ performance or implement proper countermeasures to avoid any possible Electro-Magnetic Compatibility issue.

Routing of noisy signals below the module, on the top layer of the application PCB, is not recommended.

Make sure that the module, RF and analog parts / circuits, high speed digital circuits are clearly separated from any sensitive part / circuit which may be affected by Electro-Magnetic Interference or employ countermeasures to avoid any possible Electro-Magnetic Compatibility issues.

Provide enough clearance between the module and any external part.

☞ The heat dissipation during continuous transmission at maximum power can significantly raise the temperature of the application base-board below the LARA-R2 series modules: avoid placing temperature sensitive devices close to the module.
2.11 Module footprint and paste mask

Figure 68 and Table 50 describe the suggested footprint (i.e. copper mask) and paste mask layout for LARA modules: the proposed land pattern layout reflects the modules’ pins layout, while the proposed stencil apertures layout is slightly different (see the F'', H'', I'', J'', O'' parameters compared to the F', H', I', J', O' ones).

The Non Solder resist Mask Defined (NSMD) pad type is recommended over the Solder resist Mask Defined (SMD) pad type, implementing the solder mask opening 50 µm larger per side than the corresponding copper pad.

The recommended solder paste thickness is 150 µm, according to application production process requirements.

Table 50: LARA-R2 series modules suggested footprint and paste mask dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>26.0 mm</td>
<td>F2''</td>
<td>5.00 mm</td>
<td>K</td>
<td>2.75 mm</td>
</tr>
<tr>
<td>B</td>
<td>24.0 mm</td>
<td>G</td>
<td>1.10 mm</td>
<td>L</td>
<td>6.75 mm</td>
</tr>
<tr>
<td>C</td>
<td>2.60 mm</td>
<td>H'</td>
<td>0.80 mm</td>
<td>M1</td>
<td>1.80 mm</td>
</tr>
<tr>
<td>D</td>
<td>2.00 mm</td>
<td>H''</td>
<td>0.75 mm</td>
<td>M2</td>
<td>3.60 mm</td>
</tr>
<tr>
<td>E</td>
<td>6.50 mm</td>
<td>I'</td>
<td>1.50 mm</td>
<td>N</td>
<td>2.10 mm</td>
</tr>
<tr>
<td>F1'</td>
<td>1.05 mm</td>
<td>I''</td>
<td>1.55 mm</td>
<td>O'</td>
<td>1.10 mm</td>
</tr>
<tr>
<td>F1''</td>
<td>1.00 mm</td>
<td>J'</td>
<td>0.30 mm</td>
<td>O''</td>
<td>1.05 mm</td>
</tr>
<tr>
<td>F2'</td>
<td>5.05 mm</td>
<td>J''</td>
<td>0.35 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are recommendations only and not specifications. The exact copper, solder and paste mask geometries, distances, stencil thicknesses and solder paste volumes must be adapted to the specific production processes (e.g. soldering etc.) of the customer.
2.12 Thermal guidelines

☞ Modules’ operating temperature range is specified in the LARA-R2 series data sheet [1].

The most critical condition concerning module thermal performance is the uplink transmission at maximum power (data upload in connected mode), when the baseband processor runs at full speed, radio circuits are all active and the RF power amplifier is driven to higher output RF power. This scenario is not often encountered in real networks (for example, see the Terminal Tx Power distribution for WCDMA, taken from operation on a live network, described in the GSMA TS.09 Battery Life Measurement and Current Consumption Technique [17]); however the application should be correctly designed to cope with it.

During transmission at maximum RF power, the LARA-R2 series modules generate thermal power that may exceed 2 W: this is an indicative value since the exact generated power strictly depends on operating condition such as the actual antenna return loss, the number of allocated TX resource blocks, the transmitting frequency band, etc. The generated thermal power must be adequately dissipated through the thermal and mechanical design of the application.

The spreading of the Module-to-Ambient thermal resistance ($R_{th,M-A}$) depends on the module operating condition. The overall temperature distribution is influenced by the configuration of the active components during the specific mode of operation and their different thermal resistance toward the case interface.

☞ The Module-to-Ambient thermal resistance value and the relative increase of module temperature will differ according to the specific mechanical deployments of the module, e.g. application PCB with different dimensions and characteristics, mechanical shells enclosure, or forced air flow.

The increase of the thermal dissipation, i.e. the reduction of the Module-to-Ambient thermal resistance, will decrease the temperature of the modules’ internal circuitry for a given operating ambient temperature. This improves the device long-term reliability in particular for applications operating at high ambient temperature.

Recommended hardware techniques to be used to improve heat dissipation in the application:

- Connect each GND pin with solid ground layer of the application board and connect each ground area of the multilayer application board with a complete thermal via stacked down to the main ground layer.
- Provide a ground plane as wide as possible on the application board.
- Optimize antenna return loss, to optimize overall electrical performance of the module including a decrease of module thermal power.
- Optimize the thermal design of any high-power components included in the application, such as linear regulators and amplifiers, to optimize overall temperature distribution in the application device.
- Select the material, the thickness and the surface of the box (i.e. the mechanical enclosure) of the application device that integrates the module so that it provides good thermal dissipation.

Further hardware techniques that may be considered to improve the heat dissipation in the application:

- Force ventilation air-flow within the mechanical enclosure.
- Provide a heat sink component attached to the module top side, with electrically insulated / high thermal conductivity adhesive, or on the backside of the application board, below the cellular module, as a large part of the heat is transported through the GND pads of the LARA-R2 series LGA modules and dissipated over the backside of the application board.

For example, the Module-to-Ambient thermal resistance ($R_{th,M-A}$) is strongly reduced with forced air ventilation and a heat-sink installed on the back of the application board, decreasing the module temperature variation.
Beside the reduction of the Module-to-Ambient thermal resistance implemented by proper application hardware design, the increase of module temperature can be moderated by proper application software implementation:

- Enable power saving configuration using the AT+UPSV command (see section 1.14.17).
- Enable module connected mode for a given time period and then disable it for a time period long enough to properly mitigate temperature increase.

2.13 ESD guidelines

The sections 2.13.1 and 2.13.2 are related to EMC / ESD immunity. The modules are ESD sensitive devices and the ESD sensitivity for each pin (as Human Body Model according to JESD22-A114F) is specified in the LARA-R2 series data sheet [1]. Special precautions are required when handling: see section 3.2 for handling guidelines.

2.13.1 ESD immunity test overview

The immunity of devices integrating LARA-R2 series modules to Electro-Static Discharge (ESD) is part of the Electro-Magnetic Compatibility (EMC) conformity, which is required for products bearing the CE marking, compliant with the Radio Equipment Directive (2014/53/EU), the EMC Directive (2014/30/EU) and the Low Voltage Directive (2014/35/EU).

Compliance with these directives implies conformity to the following European Norms for device ESD immunity: the ESD standard EN 61000-4-2 [18] and the radio equipment standards EN 301 489-1 [19], EN 301 489-52 [20], the requirements of which are summarized in Table 51.

ESD immunity test is performed at the enclosure port, defined by EN 301 489-1 [19] as the physical boundary through which the electromagnetic field radiates. If the device has an integral antenna, the enclosure port is defined as all insulating and conductive surfaces housing the device. If the device has a removable antenna, the antenna port can be separated from the enclosure port. The antenna port includes the antenna element and its interconnecting cable surfaces.

The applicability of the ESD immunity test to the whole device depends on the device classification as defined by ETSI EN 301 489-1 [19]. Applicability of the ESD immunity test to the relative device ports or the relative interconnecting cables to auxiliary equipment, depends on device accessible interfaces and manufacturer requirements, as defined by ETSI EN 301 489-1 [19].

Contact discharges are performed at conductive surfaces, while air discharges are performed at insulating surfaces. Indirect contact discharges are performed on the measurement setup horizontal and vertical coupling planes as defined in CENELEC EN 61000-4-2 [18].

☞ For the definition of integral antenna, removable antenna, antenna port, device classification, see EN 301 489-1 [19], whereas for contact and air discharges definitions, see EN 61000-4-2 [18].

<table>
<thead>
<tr>
<th>Application</th>
<th>Category</th>
<th>Immunity level</th>
</tr>
</thead>
<tbody>
<tr>
<td>All exposed surfaces of the radio equipment and ancillary equipment in a representative configuration</td>
<td>Contact Discharge</td>
<td>4 kV</td>
</tr>
<tr>
<td></td>
<td>Air Discharge</td>
<td>8 kV</td>
</tr>
</tbody>
</table>

Table 51: EMC / ESD immunity requirements as defined by CENELEC EN 61000-4-2, ETSI EN 301 489-1, 301 489-52

2.13.2 ESD immunity test of u-blox LARA-R2 series reference designs

Although EMC / ESD certification is required for customized devices integrating LARA-R2 series modules for the European Conformance CE mark, EMC certification (including ESD immunity) has been successfully performed on LARA-R2 series modules reference design according to the European Norms summarized in Table 51.
The EMC/ESD approved u-blox reference designs consist of a LARA-R2 series module installed onto a motherboard which provides the supply interface, SIM card and communication port. External LTE/3G/2G antennas are connected to the provided connectors.

Since an external antenna is used, the antenna port can be separated from the enclosure port. The reference design is not enclosed in a box so that the enclosure port is not identified with physical surfaces. Therefore, some test cases cannot be applied. Only the antenna port is identified as accessible for direct ESD exposure.

Table 52 summarizes the u-blox LARA-R2 series reference designs ESD immunity test results, according to the EN 61000-4-2 [18], EN 301 489-1 [19], EN 301 489-52 [20] test requirements.

<table>
<thead>
<tr>
<th>Category</th>
<th>Application</th>
<th>Immunity level</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Discharge to coupling planes</td>
<td>Enclosure</td>
<td>+4 kV / –4 kV</td>
<td>Test not applicable to u-blox reference design because it does not provide enclosure surface. The test is applicable only to equipment providing conductive enclosure surface.</td>
</tr>
<tr>
<td>(indirect contact discharge)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Discharges to conducted surfaces</td>
<td>Enclosure port</td>
<td>Not Applicable</td>
<td>Test applicable to u-blox reference design because it provides antenna with conductive & insulating surfaces. The test is applicable only to equipment providing antenna with conductive surface.</td>
</tr>
<tr>
<td>(direct contact discharge)</td>
<td>Antenna port</td>
<td>+4 kV / –4 kV</td>
<td></td>
</tr>
<tr>
<td>Air Discharge at insulating surfaces</td>
<td>Enclosure port</td>
<td>Not Applicable</td>
<td>Test not applicable to the u-blox reference design because it does not provide an enclosure surface. The test is applicable only to equipment providing insulating enclosure surface.</td>
</tr>
<tr>
<td></td>
<td>Antenna port</td>
<td>+8 kV / –8 kV</td>
<td>Test applicable to u-blox reference design because it provides antenna with conductive & insulating surfaces. The test is applicable only to equipment providing antenna with insulating surface.</td>
</tr>
</tbody>
</table>

Table 52: Enclosure ESD immunity level of u-blox LARA-R2 series reference designs

☞ LARA-R2 series reference designs implement all the ESD precautions described in section 2.13.3.

2.13.3 ESD application circuits

The application circuits described in this section are recommended and should be implemented in any device that integrates a LARA-R2 series module, according to the specific application board classification (see ETSI EN 301 489-1 [19]), to satisfy the requirements for ESD immunity test summarized in Table 51.

Antenna interface

The ANT1 port of LARA-R2 series modules provides ESD immunity up to ±4 kV for direct Contact Discharge and up to ±8 kV for Air Discharge: no further precaution to ESD immunity test is needed, as implemented in the EMC/ESD approved reference design of LARA-R2 series modules.

The ANT2 port of LARA-R2 series modules, except LARA-R204 modules, provides ESD immunity up to ±4 kV for direct Contact Discharge and up to ±8 kV for Air Discharge: no further precaution to ESD immunity test is needed, as implemented in the EMC/ESD approved reference design of LARA-R2 series modules.

The ANT2 port of LARA-R204 modules provides ESD immunity up to ±1 kV for direct Contact Discharge and up to ±2 kV for Air Discharge: higher protection level is required if the line is externally accessible on the device (i.e. the application board where the LARA-R204 module is mounted). The
following precautions are suggested for satisfying the ESD immunity test requirements for the ANT2 port, using LARA-R204 modules:

- If an embedded secondary antenna is used, the insulating enclosure of the device should provide protection up to ±4 kV to direct contact discharge and up to ±8 kV to air discharge to the secondary antenna interface.
- If an external secondary antenna is used, the secondary antenna and its connecting cable should provide a completely insulated enclosure able to provide protection up to ±4 kV to direct contact discharge and up to ±8 kV to air discharge to the whole secondary antenna and cable surfaces, otherwise it is suggested to provide an external ultra low capacitance ESD protection (e.g. Infineon ESD0P2RF-02LRH) at the secondary antenna port, as described in Figure 45 and Table 35 (section 2.4).

The antenna interface application circuit implemented in the EMC / ESD approved reference designs of LARA-R2 series modules is described in Figure 45 and Table 35 (section 2.4).

RESET_N pin

The following precautions are suggested for the RESET_N line of LARA-R2 series modules, depending on the application board handling, to satisfy ESD immunity test requirements:

- It is recommended to keep the connection line to RESET_N as short as possible.

Maximum ESD sensitivity rating of the RESET_N pin is 1 kV (Human Body Model according to JESD22-A114). A higher protection level could be required if the RESET_N pin is externally accessible on the application board. The following precautions are suggested to achieve higher protection level:

- A general purpose ESD protection device (e.g. EPCOS CA05P4S14THSG varistor array or EPCOS CT0402S14AHSG varistor) should be mounted on the RESET_N line, close to the accessible point.

The RESET_N application circuit implemented in the EMC / ESD approved reference design of LARA-R2 series modules is described in Figure 40 and Table 31 (section 2.3.2).

SIM interface

The following precautions are suggested for the LARA-R2 series modules SIM interface (VSIM, SIM_RST, SIM_IO, SIM_CLK), depending on the application board handling, to satisfy ESD immunity test requirements:

- A bypass capacitor of about 22 pF to 47 pF (e.g. Murata GRM1555C1H470J) must be mounted on the lines connected to the VSIM, SIM_RST, SIM_IO and SIM_CLK pins to assure SIM interface functionality when an electrostatic discharge is applied to the application board enclosure.
- It is suggested to use as short as possible connection lines at SIM pins.

Maximum ESD sensitivity rating of SIM interface pins is 1 kV (Human Body Model according to JESD22-A114). A higher protection level could be required if SIM interface pins are externally accessible on the application board. The following precautions are suggested to achieve higher protection level:

- A low capacitance (i.e. less than 10 pF) ESD protection device (e.g. Tyco Electronics PESD0402-140) should be mounted on each SIM interface line, close to the accessible points (i.e. close to the SIM card holder).

The SIM interface application circuit implemented in the EMC / ESD approved reference design of LARA-R2 series modules is described in Figure 48 and Table 38 (section 2.5).

Other pins and interfaces

All the module pins that are externally accessible on the device integrating LARA-R2 series module should be included in the ESD immunity test, since they are considered to be a port as defined in ETSI EN 301 489-1 [19]. Depending on applicability, to satisfy ESD immunity test requirements according
to ESD category level, all the module pins that are externally accessible should be protected up to ±4 kV for direct Contact Discharge and up to ±8 kV for Air Discharge applied to the enclosure surface.

The maximum ESD sensitivity rating of all the other pins of the module is 1 kV (Human Body Model according to JESD22-A114). Higher protection level could be required if the related pin is externally accessible on the application board. The following precautions are suggested to achieve a higher protection level:

- **USB interface**: a very low capacitance (i.e. less or equal to 1 pF) ESD protection device (e.g. Tyco Electronics PESD0402-140 ESD protection device) should be mounted on the USB_D+ and USB_D- lines, close to the accessible points (i.e. close to the USB connector).
- **Other pins**: a general purpose ESD protection device (e.g. EPCOS CA05P4S14THSG varistor array or EPCOS CT0402S14AHSG varistor) should be mounted on the related line, close to the accessible point.
2.14 Schematic for LARA-R2 series module integration

Figure 69 is an example of a schematic diagram where a LARA-R2 series cellular module "02", "62" or "82" product version is integrated into an application board, using all the available interfaces and functions of the module.

Figure 69: Example of schematic diagram to integrate a LARA-R2 module using all interfaces
2.15 Design-in checklist

This section provides a design-in checklist.

2.15.1 Schematic checklist

The following are the most important points for a simple schematic check:

- DC supply must provide a nominal voltage at the VCC pin within the operating range limits.
- DC supply must be capable of supporting both the highest peak and the highest averaged current consumption values in connected mode, as specified in the LARA-R2 series data sheet [1].
- VCC voltage supply should be clean, with very low ripple/noise: provide the suggested bypass capacitors, in particular if the application device integrates an internal antenna.
- Do not apply loads which might exceed the limit for maximum available current from V_INT supply.
- Check that the voltage level of any connected pin does not exceed the relative operating range.
- Provide accessible test points directly connected to the following pins of the LARA-R2 series modules: V_INT, PWR_ON and RESET_N for diagnostic purposes.
- Capacitance and series resistance must be limited on each SIM signal to match the SIM specifications.
- Insert the suggested pF capacitors on each SIM signal and low capacitance ESD protections if accessible.
- Check UART signals direction, as the modules’ signal names follow the ITU-T V.24 Recommendation [5].
- Provide accessible test points directly connected to all the UART pins of the LARA-R2 series modules (TXD, RXD, DTR, DCD) for diagnostic purpose, in particular providing a 0 Ω series jumper on each line to detach each UART pin of the module from the DTE application processor.
- Capacitance and series resistance must be limited on each high speed line of the USB interface.
- If the USB is not used, provide accessible test points directly connected to the USB interface (VUSB_DET, USB_D+ and USB_D- pins).
- Capacitance and series resistance must be limited on each high speed line of the HSIC interface.
- Consider providing appropriate low value series damping resistors on SDIO lines to avoid reflections.
- Add a proper pull-up resistor (e.g. 4.7 kΩ) to V_INT or another proper 1.8 V supply on each DDC (I2C) interface line, if the interface is used.
- Check the digital audio interface specifications to connect a proper external audio device.
- Capacitance and series resistance must be limited on master clock output line and each I2S interface line.
- Consider passive filtering parts on each used analog audio line.
- Use transistors with at least an integrated resistor in the base pin or otherwise put a 10 kΩ resistor on the board in series to the GPIO when those are used to drive LEDs.
- Provide proper precautions for ESD immunity as required on the application board.
- Do not apply voltage to any generic digital interface pin of LARA-R2 series modules before the switch-on of the generic digital interface supply source (V_INT).
- All unused pins of LARA-R2 series modules can be left unconnected except the RSVD pin number 33, which must be connected to GND.
2.15.2 Layout checklist

The following are the most important points for a simple layout check:

- Check 50 Ω nominal characteristic impedance of the RF transmission line connected to the **ANT1** and the **ANT2** ports (antenna RF interfaces).
- Ensure no coupling occurs between the RF interface and noisy or sensitive signals (primarily analog audio input/output signals, SIM signals, high-speed digital lines such as SDIO, USB and other data lines).
- Optimize placement for minimum length of RF line.
- Check the footprint and paste mask designed for LARA-R2 series module as illustrated in section 2.11.
- **VCC** line should be as wide and as short as possible.
- Route **VCC** supply line away from RF lines / parts and other sensitive analog lines / parts.
- The **VCC** bypass capacitors in the picoFarad range should be placed as close as possible to the **VCC** pins, in particular if the application device integrates an internal antenna.
- Ensure an optimal grounding connecting each **GND** pin with application board solid ground layer.
- Use as many vias as possible to connect the ground planes on a multilayer application board, providing a dense line of vias at the edges of each ground area, in particular along the RF and high speed lines.
- Keep routing short and minimize parasitic capacitance on the SIM lines to preserve signal integrity.
- **USB_D+/USB_D-** traces should meet the characteristic impedance requirement (90 Ω differential and 30 Ω common mode) and should not be routed close to any RF line / part.
- HSIC traces must be designed as 50 Ω nominal characteristic impedance transmission lines.
- Keep the SDIO traces short, avoid stubs, avoid coupling with any RF line / part and consider low value series damping resistors to avoid reflections and other losses in signal integrity.
- Ensure appropriate RF precautions for the Wi-Fi and Cellular technologies coexistence.
- Ensure appropriate RF precautions for the GNSS and Cellular technologies coexistence as described in the GNSS implementation application note [22].
- Route analog audio signals away from noisy sources (primarily RF interface, **VCC**, switching supplies).
- The audio outputs lines on the application board must be wide enough to minimize series resistance.

2.15.3 Antenna checklist

- Antenna termination should provide a 50 Ω characteristic impedance with VSWR at least less than 3:1 (recommended 2:1) on operating bands in the deployment geographical area.
- Follow the recommendations of the antenna producer for correct antenna installation and deployment (PCB layout and matching circuitry).
- Ensure compliance with any regulatory agency RF radiation requirement, as detailed in sections 4.2.2 and/or 4.3.1 for products marked with the FCC and/or IC.
- Ensure high and similar efficiency for both the primary (**ANT1**) and the secondary (**ANT2**) antenna.
- Ensure high isolation between the primary (**ANT1**) and the secondary (**ANT2**) antenna.
- Ensure a low Envelope Correlation Coefficient between the primary (**ANT1**) and the secondary (**ANT2**) antenna: the 3D antenna radiation patterns should have radiation lobes in different directions.
- Ensure high isolation between the cellular antennas and any other antenna or transmitter.
3 Handling and soldering

☞ No natural rubbers, no hygroscopic materials or materials containing asbestos are employed.

3.1 Packaging, shipping, storage and moisture preconditioning

For information pertaining to LARA-R2 series reels / tapes, Moisture Sensitivity levels (MSD), shipment and storage information, as well as drying for preconditioning, see the LARA-R2 series data sheet [1] and the u-blox package information user guide [25].

3.2 Handling

The LARA-R2 series modules are Electro-Static Discharge (ESD) sensitive devices.

⚠ Ensure ESD precautions are implemented during handling of the module.

Electrostatic discharge (ESD) is the sudden and momentary electric current that flows between two objects at different electrical potentials caused by direct contact or induced by an electrostatic field. The term is usually used in the electronics and other industries to describe momentary unwanted currents that may cause damage to electronic equipment. The ESD sensitivity for each pin of the LARA-R2 series modules (as Human Body Model according to JESD22-A114F) is specified in the LARA-R2 series data sheet [1].

ESD prevention is based on establishing an Electrostatic Protective Area (EPA). The EPA can be a small working station or a large manufacturing area. The main principle of an EPA is that there are no highly charging materials near ESD sensitive electronics, all conductive materials are grounded, workers are grounded, and charge build-up on ESD sensitive electronics is prevented. International standards are used to define typical EPA and can be obtained for example from International Electrotechnical Commission (IEC) or American National Standards Institute (ANSI).

In addition to standard ESD safety practices, the following measures should be taken into account whenever handling the LARA-R2 series modules:

- Unless there is a galvanic coupling between the local GND (i.e. the work table) and the PCB GND, then the first point of contact when handling the PCB must always be between the local GND and PCB GND.
- Before mounting an antenna patch, connect the ground of the device.
- When handling the module, do not come into contact with any charged capacitors and be careful when contacting materials that can develop charges (e.g. patch antenna, coax cable, soldering iron, ...).
- To prevent electrostatic discharge through the RF pin, do not touch any exposed antenna area. If there is any risk that such exposed antenna area is touched in a non-ESD protected work area, implement proper ESD protection measures in the design.
- When soldering the module and patch antennas to the RF pin, make sure to use an ESD safe soldering iron.

For more robust designs, employ additional ESD protection measures on the application device integrating the LARA-R2 series modules, as described in section 2.13.3.
3.3 Soldering

3.3.1 Soldering paste

Use of "No Clean" soldering paste is strongly recommended, as it does not require cleaning after the soldering process has taken place. The paste listed in the example below meets these criteria.

Soldering Paste: OM338 SAC405 / Nr.143714 (Cookson Electronics)

Alloy specification:
- 95.5% Sn / 3.9% Ag / 0.6% Cu (95.5% Tin / 3.9% Silver / 0.6% Copper)
- 95.5% Sn / 4.0% Ag / 0.5% Cu (95.5% Tin / 4.0% Silver / 0.5% Copper)

Melting Temperature: +217 °C

Stencil Thickness: 150 µm for base boards

The final choice of the soldering paste depends on the approved manufacturing procedures. The stencil geometry for applying soldering paste should meet the recommendations in section 2.11.

☞ The quality of the solder joints should meet the appropriate IPC specification.

3.3.2 Reflow soldering

A convection type-soldering oven is strongly recommended over the infrared type radiation oven. Convection heated ovens allow precise control of the temperature and all parts will be heated up evenly, regardless of material properties, thickness of components and surface color.

Consider the "IPC-7530A Guidelines for temperature profiling for mass soldering (reflow and wave) processes".

Reflow profiles are to be selected according to the following recommendations.

⚠ Failure to observe these recommendations can result in severe damage to the device!

Preheat phase

Initial heating of component leads and balls. Residual humidity will be dried out. Note that this preheat phase will not replace prior baking procedures.

- **Temperature rise rate:** max 3 °C/s
 - If the temperature rise is too rapid in the preheat phase, it may cause excessive slumping.
- **Time:** 60 to 120 s
 - If the preheat is insufficient, rather large solder balls tend to be generated. Conversely, if performed excessively, fine balls and large balls will be generated in clusters.
- **End Temperature:** 150 °C to 200 °C
 - If the temperature is too low, non-melting tends to be caused in areas containing large heat capacity.

Heating/ reflow phase

The temperature rises above the liquidus temperature of +217 °C. Avoid a sudden rise in temperature as the slump of the paste could become worse.

- **Limit time above +217 °C liquidus temperature:** 40 to 60 s
- **Peak reflow temperature:** +245 °C
Cooling phase
A controlled cooling avoids negative metallurgical effects (solder becomes more brittle) of the solder and possible mechanical tensions in the products. Controlled cooling helps to achieve bright solder fillets with a good shape and low contact angle.

- Temperature fall rate: max 4 °C/s

☞ To avoid falling off, modules should be placed on the topside of the motherboard during soldering.

The soldering temperature profile chosen at the factory depends on additional external factors, such as the choice of soldering paste, size, thickness and properties of the base board, etc.

⚠ Exceeding the maximum soldering temperature and the maximum liquidus time limit in the recommended soldering profile may permanently damage the module.

![Soldering Profile Graph](image)

Figure 70: Recommended soldering profile

☞ LARA-R2 series modules must not be soldered with a damp heat process.

3.3.3 Optical inspection
After soldering the module, inspect it optically to verify that it is properly aligned and centered.

3.3.4 Cleaning
Cleaning the soldered modules is not recommended. Residues underneath the modules cannot be easily removed with a washing process.

- Cleaning with water will lead to capillary effects where water is absorbed in the gap between the baseboard and the module. The combination of residues of soldering flux and encapsulated water leads to short circuits or resistor-like interconnections between neighboring pads. Water will also damage the sticker and the ink-jet printed text.
- Cleaning with alcohol or other organic solvents can result in soldering flux residues flooding into the two housings, areas that are not accessible for post-wash inspections. The solvent will also damage the sticker and the ink-jet printed text.
- Ultrasonic cleaning will permanently damage the module, in particular the quartz oscillators.

For best results, use a "no clean" soldering paste and eliminate the cleaning step after the soldering.
3.3.5 Repeated reflow soldering

Repeated reflow soldering processes and soldering the module upside-down are not recommended. Boards with components on both sides may require two reflow cycles. In this case, the module should always be placed on the side of the board that is submitted into the last reflow cycle. The reason for this (besides others) is the risk of the module falling off due to the significantly higher weight in relation to other components.

☞ u-blox gives no warranty against damages to the LARA-R2 series modules caused by performing more than a total of two reflow soldering processes (one reflow soldering process to mount the LARA-R2 series module, plus one reflow soldering process to mount other parts).

3.3.6 Wave soldering

LARA-R2 series LGA modules must not be soldered with a wave soldering process. Boards with combined through-hole technology (THT) components and surface-mount technology (SMT) devices require wave soldering to solder the THT components. No more than one wave soldering process is allowed for a board with a LARA-R2 series module already populated on it.

⚠ Performing a wave soldering process on the module can result in severe damage to the device!

☞ u-blox gives no warranty against damages to the LARA-R2 series modules caused by performing more than a total of two reflow soldering processes (one reflow soldering process to mount the LARA-R2 series module, plus one plus one wave soldering process to mount other THT parts on the application board).

3.3.7 Hand soldering

Hand soldering is not recommended.

3.3.8 Rework

Rework is not recommended.

☞ Never attempt a rework on the module itself, e.g. replacing individual components. Such actions immediately terminate the warranty.

3.3.9 Conformal coating

Certain applications employ a conformal coating of the PCB using HumiSeal® or other related coating products. These materials affect the RF properties of the LARA-R2 series modules and it is important to prevent them from flowing into the module. The RF shields do not provide 100% protection for the module from coating liquids with low viscosity, and therefore care is required in applying the coating.

☞ Conformal coating of the module will void the warranty.

3.3.10 Casting

If casting is required, use viscose or another type of silicon pottant. The OEM is strongly advised to qualify such processes in combination with the LARA-R2 series modules before implementing this in production.

☞ Casting will void the warranty.
3.3.11 Grounding metal covers
Attempts to improve grounding by soldering ground cables, wick or other forms of metal strips directly onto the EMI covers is done at the customer's own risk. The numerous ground pins should be sufficient to provide optimum immunity to interferences and noise.
☞ u-blox gives no warranty for damages to the LARA-R2 series modules caused by soldering metal cables or any other forms of metal strips directly onto the EMI covers.

3.3.12 Use of ultrasonic processes
LARA-R2 series modules contain components which are sensitive to ultrasonic waves. Use of any ultrasonic processes (cleaning, welding etc.) may cause damage to the module.
☞ u-blox gives no warranty against damages to the LARA-R2 series modules caused by any ultrasonic processes.
4 Approvals

☞ For the complete list and specific details regarding the certification schemes approvals, see the LARA-R2 series data sheet [1], or please contact the u-blox office or sales representative nearest you.

4.1 Product certification approval overview

Product certification approval is the process of certifying that a product has passed all tests and criteria required by specifications, typically called “certification schemes” that can be divided into three distinct categories:

- Regulatory certification
 - Country specific approval required by local government in most regions and countries, as:
 - CE (Conformité Européenne) marking for European Union
 - FCC (Federal Communications Commission) approval for United States

- Industry certification
 - Telecom industry specific approval verifying interoperability between devices and networks:
 - GCF (Global Certification Forum), a partnership between device manufacturers and network operators to ensure and verify global devices / networks interoperability
 - PTCRB (PCS Type Certification Review Board), created by US network operators to ensure and verify interoperability between devices and North America networks

- Operator certification
 - Operator specific approval required by some mobile network operators, such as:
 - AT&T network operator in the United States
 - Verizon Wireless network operator in the United States
 - T-Mobile network operator in the United States

Even if the LARA-R2 series modules are approved under all major certification schemes, the application device that integrates the modules must be approved under all the certification schemes required by the specific application device to be deployed in the market.

The required certification scheme approvals and relative testing specifications differ depending on the country or the region where the device that integrates LARA-R2 series modules must be deployed, on the relative vertical market of the device, on type, features and functionalities of the whole application device, and on the network operators where the device must operate.

☞ Check the appropriate applicability of the LARA-R2 series module’s approvals while starting the certification process of the device integrating the module: the re-use of the u-blox cellular module’s approval can significantly reduce the cost and time to market of the application device certification.

☞ The certification of the application device that integrates a LARA-R2 series module and the compliance of the application device with all the applicable certification schemes, directives and standards are the sole responsibility of the application device manufacturer.

LARA-R2 series modules are certified according to capabilities and options stated in the Protocol Implementation Conformance Statement document (PICS) of the module. The PICS, according to the 3GPP TS 51.010-2 [12], 3GPP TS 34.121-2 [13], 3GPP TS 36.521-2 [15] and 3GPP TS 36.523-2 [16], is a statement of the implemented and supported capabilities and options of a device.

☞ The PICS document of the application device integrating a LARA-R2 module must be updated from the module PICS statement if any feature stated as supported by the module in its PICS document is not implemented or disabled in the application device. For more details regarding the AT commands settings that affect the PICS, see the u-blox AT commands manual [2].
Check the specific settings required for mobile network operators approvals as they may differ from the AT commands settings defined in the module as integrated in the application device. In order to use the LARA-R202 and/or LARA-R203 module as a T-Mobile certified device, the +UIMSCFG AT command shall be used to turn off VoLTE functionality: cellular capabilities of the device are not modified (to keep consistence with the PICS), but the UE will not be allowed to receive MT calls nor to perform MO normal or emergency calls. The CSFB feature is disabled with appropriate setting of LTE operation mode via AT+CEMODE=2 command. For more details about the mentioned AT commands, see u-blox AT commands manual [2].

4.2 US Federal Communications Commission notice

The following LARA-R2 series modules have the United States FCC grant, with related FCC IDs:

- u-blox LARA-R202 cellular modules: XPY1EIQ24NN
- u-blox LARA-R203 cellular modules: XPY1DIQN3NN
- u-blox LARA-R204 cellular modules: XPY1EIQN2NN

The LARA-R211 module does not have the FCC grant: the LTE FDD-7 band shall be disabled when operating in United States. For detailed instructions, see the u-blox AT commands manual [2], +UBANDSEL command.

4.2.1 Safety warnings review the structure

- Equipment for building-in. The requirements for fire enclosure must be evaluated in the end product
- The clearance and creepage current distances required by the end product must be withheld when the module is installed
- The cooling of the end product shall not negatively be influenced by the installation of the module
- Excessive sound pressure from earphones and headphones can cause hearing loss
- No natural rubbers, no hygroscopic materials nor materials containing asbestos are employed

4.2.2 Declaration of conformity

This device complies with Part 15 of the FCC rules and with the ISED Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- this device may not cause harmful interference
- this device must accept any interference received, including interference that may cause undesired operation

⚠ Radiofrequency radiation exposure information: this equipment complies with FCC radiation exposure limits prescribed for an uncontrolled environment for fixed and mobile use conditions. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and the body of the user or nearby persons. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC procedures and as authorized in the module certification filing.

⚠ The gain of the system antenna(s) used for the LARA-R2 series modules (i.e. the combined transmission line, connector, cable losses and radiating element gain) must not exceed the value specified in the FCC Grant for mobile and fixed or mobile operating configurations:
- LARA-R202 modules:
 - 9.8 dBi in 700 MHz, i.e. LTE FDD-12 band
 - 10.0 dBi in 850 MHz, i.e. LTE FDD-5 or UMTS FDD-5 band
 - 6.5 dBi in 1700 MHz, i.e. LTE FDD-4 band
 - 8.7 dBi in 1900 MHz, i.e. LTE FDD-2 or UMTS FDD-2 band
LARA-R203 modules:
- 9.7 dBi in 700 MHz, i.e. LTE FDD-12 band
- 7.1 dBi in 1700 MHz, i.e. LTE FDD-4 band
- 10.5 dBi in 1900 MHz, i.e. LTE FDD-2 band

LARA-R204 modules:
- 10.2 dBi in 750 MHz, i.e. LTE FDD-13 band
- 7.6 dBi in 1700 MHz, i.e. LTE FDD-4 band

4.2.3 Modifications

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by u-blox could void the user's authority to operate the equipment.

⚠ Manufacturers of mobile or fixed devices incorporating the LARA-R2 series modules are authorized to use the FCC Grants of the LARA-R2 series modules for their own final products according to the conditions referenced in the certificates.

⚠ The FCC Label shall in the above case be visible from the outside, or the host device shall bear a second label stating:

"Contains FCC ID: XPY1EIQ24NN" resp.
"Contains FCC ID: XPY1DIQN3NN" resp.
"Contains FCC ID: XPY1EIQN2NN" resp.

⚠ IMPORTANT: Manufacturers of portable applications incorporating the LARA-R2 series modules are required to have their final product certified and apply for their own FCC Grant related to the specific portable device. This is mandatory to meet the SAR requirements for portable devices.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

⚠ Additional Note: as per 47CFR15.105 this equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help
4.3 Innovation, Science, Economic Development Canada notice

The following LARA-R2 series modules have the ISED Canada grant (formerly known as IC - Industry Canada), with related ISED Certification Numbers:

- u-blox LARA-R202 cellular modules: 8595A-1EIQ24NN
- u-blox LARA-R203 cellular modules: 8595A-1DIQN3NN
- u-blox LARA-R204 cellular modules: 8595A-1EIQN2NN

☞ The LARA-R211 module does not have the ISED grant: the LTE FDD-7 band shall be disabled when operating in Canada. For detailed instructions, see the u-blox AT commands manual [2], +UBANDSEL command.

4.3.1 Declaration of Conformity

This device complies with the ISED Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- this device may not cause harmful interference
- this device must accept any interference received, including interference that may cause undesired operation

⚠ Radiofrequency radiation exposure Information: this equipment complies with radiation exposure limits prescribed for an uncontrolled environment for fixed and mobile use conditions. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and the body of the user or nearby persons. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter except as authorized in the certification of the product.

⚠ The gain of the system antenna(s) used for the LARA-R2 series modules (i.e. the combined transmission line, connector, cable losses and radiating element gain) must not exceed the value specified in the ISED Canada Certificate Grant for mobile and fixed or mobile operating configurations:

- LARA-R202 modules:
 - 6.7 dBi in 700 MHz, i.e. LTE FDD-12 band
 - 6.7 dBi in 850 MHz, i.e. LTE FDD-5 or UMTS FDD-5 band
 - 6.5 dBi in 1700 MHz, i.e. LTE FDD-4 band
 - 8.7 dBi in 1900 MHz, i.e. LTE FDD-2 or UMTS FDD-2 band
- LARA-R203 modules:
 - 6.6 dBi in 700 MHz, i.e. LTE FDD-12 band
 - 7.1 dBi in 1700 MHz, i.e. LTE FDD-4 band
 - 9.5 dBi in 1900 MHz, i.e. LTE FDD-2 band
- LARA-R204 modules:
 - 7.0 dBi in 750 MHz, i.e. LTE FDD-13 band
 - 7.6 dBi in 1700 MHz, i.e. LTE FDD-4 band

4.3.2 Modifications

The ISED Canada requires the user to be notified that any changes or modifications made to this device that are not expressly approved by u-blox could void the user’s authority to operate the equipment.

⚠ Manufacturers of mobile or fixed devices incorporating the LARA-R2 series modules are authorized to use the ISED Canada Certificates of the LARA-R2 series modules for their own final products according to the conditions referenced in the certificates.
The ISED Canada Label shall in the above case be visible from the outside, or the host device shall bear a second label stating:
"Contains IC: 8595A-1EIQ24NN" resp.
"Contains IC: 8595A-1DIQN3NN" resp.
"Contains IC: 8595A-1EIQN2NN" resp.

Innovation, Science and Economic Development Canada (ISED) Notices

This Class B digital apparatus complies with Canadian CAN ICES-3(B) / NMB-3(B) and RSS-210.

Operation is subject to the following two conditions:
- this device may not cause interference
- this device must accept any interference, including interference that may cause undesired operation of the device

Radio Frequency (RF) Exposure Information

The radiated output power of the u-blox Cellular Module is below the Innovation, Science and Economic Development Canada (ISED) radio frequency exposure limits. The u-blox Cellular Module should be used in such a manner such that the potential for human contact during normal operation is minimized.

This device has been evaluated and shown compliant with the ISED RF Exposure limits under mobile exposure conditions (antennas are greater than 20 cm from a person's body).

This device has been certified for use in Canada. Status of the listing in the Innovation, Science and Economic Development’s REL (Radio Equipment List) can be found at the following web address:

Additional Canadian information on RF exposure also can be found at the following web address:

IMPORTANT: Manufacturers of portable applications incorporating the LARA-R2 series modules are required to have their final product certified and apply for their own Innovation, Science and Economic Development Certificate related to the specific portable device. This is mandatory to meet the SAR requirements for portable devices.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Avis d’Innovation, Sciences et Développement économique Canada (ISDE)

Cet appareil numérique de classe B est conforme aux normes canadiennes CAN ICES-3(B) / NMB-3(B) et CNR-210.

Son fonctionnement est soumis aux deux conditions suivantes :
- cet appareil ne doit pas causer d’interférence
- cet appareil doit accepter toute interférence, notamment les interférences qui peuvent affecter son fonctionnement

Informations concernant l’exposition aux fréquences radio (RF)

La puissance de sortie émise par l’appareil de sans fil u-blox Cellular Module est inférieure à la limite d'exposition aux fréquences radio d'Innovation, Sciences et Développement économique Canada (ISDE). Utilisez l’appareil de sans fil u-blox Cellular Module de façon à minimiser les contacts humains lors du fonctionnement normal.
Ce périphérique a été évalué et démontré conforme aux limites d'exposition aux fréquences radio (RF) d'IC lorsqu'il est installé dans des produits hôtes particuliers qui fonctionnent dans des conditions d'exposition à des appareils mobiles (les antennes se situent à plus de 20 centimètres du corps d'une personne).

Ce périphérique est homologué pour l'utilisation au Canada. Pour consulter l'entrée correspondant à l'appareil dans la liste d'équipement radio (REL - Radio Equipment List) d'Industrie Canada rendez-vous sur:

⚠ IMPORTANT: les fabricants d'applications portables contenant les modules LARA-R2 series doivent faire certifier leur produit final et déposer directement leur candidature pour une certification FCC ainsi que pour un certificat ISDE Canada délivré par l'organisme chargé de ce type d'appareil portable. Ceci est obligatoire afin d'être en accord avec les exigences SAR pour les appareils portables.

Tout changement ou modification non expressément approuvé par la partie responsable de la certification peut annuler le droit d'utiliser l'équipement.
4.4 European Conformance CE mark

LARA-R211 modules have been evaluated against the essential requirements of the Radio Equipment Directive 2014/53/EU.

In order to satisfy the essential requirements of the 2014/53/EU RED, the modules are compliant with the following standards:

- **Radio Spectrum Efficiency (Article 3.2):**
 - EN 301 511
 - EN 301 908-1
 - EN 301 908-13

- **Electromagnetic Compatibility (Article 3.1b):**
 - EN 301 489-1
 - EN 301 489-52

- **Health and Safety (Article 3.1a)**
 - EN 60950-1
 - EN 62368-1
 - EN 62311

⚠ Radiofrequency radiation exposure information: this equipment complies with radiation exposure limits prescribed for an uncontrolled environment for fixed and mobile use conditions. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator and the body of the user or nearby persons. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter except as authorized in the certification of the product.

⚠ The gain of the system antenna(s) used for the LARA-R2 series modules (i.e. the combined transmission line, connector, cable losses and radiating element gain) must not exceed the following values for mobile and fixed or mobile operating configurations:

- **LARA-R211 modules:**
 - 9.3 dBi in 800 MHz, i.e. LTE FDD-20 band
 - 2.9 dBi in 900 MHz, i.e. GSM 900 band
 - 8.8 dBi in 1800 MHz, i.e. GSM 1800 or LTE FDD-3 band
 - 13.0 dBi in 2600 MHz, i.e. LTE FDD-7 band

The conformity assessment procedure for the modules, referred to in Article 17 and detailed in Annex II of Directive 2014/53/EU, has been followed.

Thus, the following marking is included in the product:

![CE Mark]
5 Product testing

5.1 u-blox in-series production test

u-blox focuses on high quality for its products. All units produced are fully tested automatically in the production line. A stringent quality control process has been implemented in the production line. Defective units are analyzed in detail to improve production quality.

This is achieved with automatic test equipment (ATE) in the production line, which logs all production and measurement data. A detailed test report for each unit can be generated from the system. Figure 71 illustrates the typical automatic test equipment (ATE) in a production line.

The following typical tests are among the production tests.

- Digital self-test (firmware download, Flash firmware verification, IMEI programming)
- Measurement of voltages and currents
- Adjustment of ADC measurement interfaces
- Functional tests (serial interface communication, SIM card communication)
- Digital tests (GPIOs and other interfaces)
- Measurement and calibration of RF characteristics in all supported bands (such as receiver S/N verification, frequency tuning of the reference clock, calibration of transmitter and receiver power levels, etc.)
- Verification of RF characteristics after calibration (i.e. modulation accuracy, power levels, spectrum, etc. are checked to ensure they are all within tolerances when calibration parameters are applied)

Figure 71: Automatic test equipment for module tests
5.2 Test parameters for OEM manufacturers

Because of the testing performed by u-blox (with 100% coverage), an OEM manufacturer does not need to repeat firmware tests or measurements of the module RF performance or tests over analog and digital interfaces in their production test.

An OEM manufacturer should focus on:

- Module assembly on the device; it should be verified that:
 - Soldering and handling processes did not damage the module components
 - All module pins are well soldered on the device board
 - There are no short circuits between pins
- Component assembly on the device; it should be verified that:
 - Communications with host controller can be established
 - The interfaces between the module and device are working
 - Overall RF functional test of the device including the antenna

Dedicated tests can be implemented to check the device. For example, the measurement of module current consumption when set in a specified status can detect a short circuit if compared with a “Golden Device” result.

In addition, module AT commands can be used to perform functional tests on digital interfaces (communication with host controller, check SIM interface, GPIOs, etc.), on audio interfaces (audio loop for test purposes can be enabled by the AT+UPAR=2 command as described in the u-blox AT commands manual [2]), and to perform RF functional tests (see following section 5.2.2 for details).

5.2.1 “Go/No go” tests for integrated devices

A “Go/No go” test is typically performed to compare the signal quality with a “Golden Device” in a location with excellent network coverage and known signal quality. This test should be performed after data connection has been established. AT+CSQ is the typical AT command used to check signal quality in term of RSSI (see the u-blox AT commands manual [2] for further details).

These kinds of test may be useful as a “go / no go” test, not for RF performance measurements.

This test is suitable to check the functionality of communication with the host controller or SIM card, as well as the power supply. It is also a means to verify if the components at antenna interface are well soldered.

5.2.2 Functional tests providing RF operation

The overall RF functional test of the device including the antenna can be performed with basic instruments such as a spectrum analyzer (or an RF power meter) and a signal generator with the assistance of AT+UTEST command over the AT command user interface.

The AT+UTEST command provides a simple interface to set the module to Rx or Tx test modes ignoring the cellular signaling protocol. The command can set the module into:

- transmitting mode in a specified channel and power level in all supported modulation schemes and bands
- receiving mode in a specified channel to returns the measured power level in all supported bands

See the u-blox AT commands manual [2] and the End user test application note [24], for the AT+UTEST command syntax description and examples of use.

This feature allows the measurement of the transmitter and receiver power levels to check component assembly related to the module antenna interface and to check other device interfaces on which RF performance depends.
⚠ To avoid module damage during transmitter test, a proper antenna according to module specifications or a 50 Ω termination must be connected to the **ANT1** port.

⚠ To avoid module damage during receiver, test the maximum power level received at the **ANT1** and **ANT2** ports which must meet the module specifications.

☞ The AT+UTEST command sets the module to emit RF power ignoring cellular signaling protocol. This emission can generate interference that can be prohibited by law in some countries. The use of this feature is intended for testing purposes in controlled environments by qualified users and must not be used during normal module operation. Follow the instructions suggested in u-blox documentation. u-blox assumes no responsibilities for the inappropriate use of this feature.

Figure 72 illustrates a typical test setup for such an RF functional test.

![Diagram](image-url)

Figure 72: Setup with spectrum analyzer or power meter and signal generator for radiated measurements
Appendix

A Migration between SARA-U2 and LARA-R2

A.1 Overview

Migrating between u-blox SARA-U2 series 3G / 2G cellular modules and LARA-R2 series LTE Cat 1 / 3G / 2G cellular modules is a straightforward procedure that allows customers to take maximum advantage of their hardware and software investments.

The SARA cellular modules (26.0 x 16.0 mm, 96-pin LGA) have a different form factor than the LARA cellular modules (26.0 x 24.0 mm, 100-pin LGA), but the footprint of SARA and LARA modules has been developed to ensure layout compatibility as described in Figure 73, so that the modules can be alternatively mounted on the same single common application board.

SARA-U2 and LARA-R2 series modules are basically pin-to-pin compatible, given that the LARA-R2 series modules provide further additional functions and interfaces, as shown in Figure 73:

- Secondary antenna
- SDIO interface
- HSIC interface
- HOST_SELECT function

SARA and LARA modules are also form-factor compatible with the u-blox LISA and TOBY cellular module families: although SARA, LARA, LISA (33.2 x 22.4 mm, 76-pin LCC) and TOBY (35.6 x 24.8 mm, 152-pin LGA) modules each have different form factors, the footprints of all the SARA, LARA, LISA and TOBY modules have been developed to ensure layout compatibility.

Figure 73: Comparison of the SARA-U2 and LARA-R2 series modules pin layout and pin assignment
With the u-blox “nested design” solution, any SARA, LARA, LISA or TOBY module can be alternatively mounted on the same space of a single “nested” application board as described in Figure 74, enabling straightforward development of products supporting different cellular radio access technologies.

![Nested design concept description: SARA, LARA, LISA and TOBY modules alternatively mounted on the same PCB](image)

Figure 74: Nested design concept description: SARA, LARA, LISA and TOBY modules alternatively mounted on the same PCB

A different top-side stencil (paste mask) is needed for each form factor (SARA, LARA, LISA and TOBY) to be alternatively mounted on the same space of a single “nested” application board, as described in Figure 75.

![Top-side stencil (paste mask) designs to alternatively mount SARA, LARA, LISA, TOBY modules on the same PCB](image)

Figure 75: Top-side stencil (paste mask) designs to alternatively mount SARA, LARA, LISA, TOBY modules on the same PCB

Detailed guidelines to implement a nested application board, a comprehensive description of the u-blox reference nested design and detailed comparisons between the u-blox SARA, LARA, LISA and TOBY modules are provided in the Nested design application note [26].
Table 53 summarizes the interfaces provided by the SARA-U2 and LARA-R2 series modules: all the interfaces provided by the different modules are electrically compatible, so that the same compatible external circuit can be implemented on the application board.

<table>
<thead>
<tr>
<th>Module</th>
<th>RF / Radio Access Technology</th>
<th>Power</th>
<th>System</th>
<th>SIM</th>
<th>Serial</th>
<th>Audio</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LTE category</td>
<td>2G bands</td>
<td>3G bands</td>
<td>Multi-slot class</td>
<td>Rx diversity</td>
<td>Antenna Detection</td>
<td>VCC module supply in</td>
</tr>
<tr>
<td>SARA-U201</td>
<td>8, 6, 1, 2, 5, 8, 19</td>
<td>12 Quad</td>
<td>12</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SARA-U260</td>
<td>8, 6, 2, 5</td>
<td>12 850 1900</td>
<td>12</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SARA-U270</td>
<td>8, 6, 1, 8</td>
<td>12 900 1800</td>
<td>12</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SARA-U280</td>
<td>8, 6, 2, 5</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LARA-R202</td>
<td>1, 2, 4, 5, 12</td>
<td>8, 6, 2, 5</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LARA-R203</td>
<td>1, 2, 4, 12</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LARA-R204</td>
<td>1, 4, 13</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LARA-R211</td>
<td>1, 3, 7, 20</td>
<td>12 900 1800</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LARA-R220</td>
<td>1, 1, 19</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LARA-R280</td>
<td>1, 3, 8, 28</td>
<td>8, 6, 1</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

● = supported by all product versions
■ = supported by all product versions except versions '02', '62' and '82'

Table 53: Summary of SARA-U2 and LARA-R2 series modules interfaces
Figure 76 summarizes the cellular operating frequency bands of the SARA-U2 and LARA-R2 series modules.
A.2 Pin-out comparison between SARA-U2 and LARA-R2

<table>
<thead>
<tr>
<th>SARA-U2 Pin no.</th>
<th>Pin name</th>
<th>Description</th>
<th>LARA-R2 Pin name</th>
<th>Description</th>
<th>Remarks for migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V_BCKP</td>
<td>RTC Supply I/O
Output characteristics:
1.8 V typ, 3 mA max
Input op. range: 1.0 V – 1.9 V</td>
<td>V_BCKP</td>
<td>RTC Supply I/O
Output characteristics:
1.8 V typ, 3 mA max
Input op. range: 1.0 V – 1.9 V</td>
<td>No functional difference</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V_INT</td>
<td>Interfaces Supply Out
Output characteristics:
1.8 V typ, 50 mA max</td>
<td>V_INT</td>
<td>Interfaces Supply Out
Output characteristics:
1.8 V typ, 50 mA max</td>
<td>No functional difference</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>UART DSR Output
1.8 V, Driver strength: 1 mA</td>
<td>DSR</td>
<td>UART DSR Output
1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>7</td>
<td>RI</td>
<td>UART RI Output
1.8 V, Driver strength: 2 mA</td>
<td>RI</td>
<td>UART RI Output
1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>8</td>
<td>DCD</td>
<td>UART DCD Output
1.8 V, Driver strength: 2 mA</td>
<td>DCD</td>
<td>UART DCD Output
1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>9</td>
<td>DTR</td>
<td>UART DTR Input
1.8 V, Internal pull-up: ~14 k</td>
<td>DTR</td>
<td>UART DTR Input
1.8 V, Internal pull-up: ~7.5 k</td>
<td>No functional difference</td>
</tr>
<tr>
<td>10</td>
<td>RTS</td>
<td>UART RTS Input
1.8 V, Internal pull-up: ~8 k</td>
<td>RTS</td>
<td>UART RTS Input
1.8 V, Internal pull-up: ~7.5 k</td>
<td>No functional difference</td>
</tr>
<tr>
<td>11</td>
<td>CTS</td>
<td>UART CTS Output
1.8 V, Driver strength: 6 mA</td>
<td>CTS</td>
<td>UART CTS Output
1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>12</td>
<td>TXD</td>
<td>UART Data Input
1.8 V, Internal pull-up: ~8 k</td>
<td>TXD</td>
<td>UART Data Input
1.8 V, Internal pull-up: ~7.5 k</td>
<td>No functional difference</td>
</tr>
<tr>
<td>13</td>
<td>RXD</td>
<td>UART Data Output
1.8 V, Driver strength: 6 mA</td>
<td>RXD</td>
<td>UART Data Output
1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PWR_ON</td>
<td>Power-on Input
No internal pull-up
L-level: 0.30 V – 0.65 V
H-level: 1.50 V – 4.40 V
ON L-level pulse time: 50 μs min / 80 μs max
OFF L-level pulse time: 1 s min</td>
<td>PWR_ON</td>
<td>Power-on Input
10 kΩ internal pull-up to V_BCKP
L-level: ~0.30 V ... 0.54 V
H-level: 1.26 V ... 2.10 V
ON L-level pulse time: 50 μs min
OFF L-level pulse time: 1 s min</td>
<td>External → Internal pull-up
Slightly different input levels
Function slightly different,</td>
</tr>
<tr>
<td>16</td>
<td>GPIO1</td>
<td>1.8 VGPIO
Driver strength: 6 mA</td>
<td>GPIO1</td>
<td>1.8 V GPIO
Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>17</td>
<td>VUSB_DET</td>
<td>USB Detect Input
5 V, Supply detection</td>
<td>VUSB_DET</td>
<td>USB Detect Input
5 V, Supply detection</td>
<td>No functional difference</td>
</tr>
<tr>
<td>18</td>
<td>RESET_N</td>
<td>Reset signal
10 kΩ internal pull-up
L-level: ~0.30 V – 0.51 V
H-level: 1.32 V – 2.01 V</td>
<td>RESET_N</td>
<td>Reset signal
10 kΩ internal pull-up
L-level: ~0.30 V – 0.51 V
H-level: 1.32 V – 2.01 V</td>
<td>No functional difference</td>
</tr>
<tr>
<td>19</td>
<td>CODEC_CLK</td>
<td>1.8 V Clock Output
Driver strength: 4 mA</td>
<td>GPIO6</td>
<td>1.8 V Clock Output
Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>GND</td>
<td>Ground</td>
<td>HOST_SELECT</td>
<td>1.8 V pin for module / host configuration selection</td>
<td>GND → HOST_SELECT</td>
</tr>
<tr>
<td>22</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
</tbody>
</table>

22 Not supported by “02”, “62” and “82” product versions
LARA-U2 to LARA-R2 Pin Mapping

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Pin name</th>
<th>Description</th>
<th>LARA-R2 Pin no.</th>
<th>Pin name</th>
<th>Description</th>
<th>Remarks for migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>GPIO2</td>
<td>1.8 V GPIO</td>
<td>GPIO2</td>
<td>1.8 V GPIO</td>
<td>Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>24</td>
<td>GPIO3</td>
<td>1.8 V GPIO</td>
<td>GPIO3</td>
<td>1.8 V GPIO</td>
<td>Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>25</td>
<td>GPIO4</td>
<td>1.8 V GPIO</td>
<td>GPIO4</td>
<td>1.8 V GPIO</td>
<td>Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>26</td>
<td>SDA</td>
<td>I2C Data I/O</td>
<td>SDA</td>
<td>I2C Data I/O</td>
<td>1.8 V, open drain</td>
<td>No functional difference</td>
</tr>
<tr>
<td>27</td>
<td>SCL</td>
<td>I2C Clock Output</td>
<td>SCL</td>
<td>I2C Clock Output</td>
<td>1.8 V, open drain</td>
<td>No functional difference</td>
</tr>
<tr>
<td>28</td>
<td>USB_D-</td>
<td>USB Data I/O (D-)</td>
<td>USB_D-</td>
<td>USB Data I/O (D-)</td>
<td>High-Speed USB 2.0</td>
<td>No functional difference</td>
</tr>
<tr>
<td>29</td>
<td>USB_D+</td>
<td>USB Data I/O (D+)</td>
<td>USB_D+</td>
<td>USB Data I/O (D+)</td>
<td>High-Speed USB 2.0</td>
<td>No functional difference</td>
</tr>
<tr>
<td>30</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>RSVD</td>
<td>Reserved</td>
<td>RSVD</td>
<td>Reserved</td>
<td></td>
<td>No functional difference</td>
</tr>
<tr>
<td>32</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>RSVD</td>
<td>Reserved</td>
<td>RSVD</td>
<td>Reserved</td>
<td>To be externally connected to GND</td>
<td>No functional difference</td>
</tr>
<tr>
<td>34</td>
<td>I2S_WA</td>
<td>I2S Word Alignment I/O, or GPIO</td>
<td>I2S_WA</td>
<td>I2S Word Alignment I/O, or GPIO, or GPIO</td>
<td>1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>35</td>
<td>I2S_TXD</td>
<td>I2S Data Output, or GPIO</td>
<td>I2S_TXD</td>
<td>I2S Data Output, or GPIO, or GPIO</td>
<td>1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>36</td>
<td>I2S_CLK</td>
<td>I2S Clock I/O, or GPIO</td>
<td>I2S_CLK</td>
<td>I2S Clock I/O, or GPIO, or GPIO</td>
<td>1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>37</td>
<td>I2S_RXD</td>
<td>I2S Data Input, or GPIO</td>
<td>I2S_RXD</td>
<td>I2S Data Input, or GPIO, or GPIO</td>
<td>1.8 V, Driver strength: 6 mA</td>
<td>No functional difference</td>
</tr>
<tr>
<td>38</td>
<td>SIM_CLK</td>
<td>SIM Clock Output</td>
<td>SIM_CLK</td>
<td>SIM Clock Output</td>
<td></td>
<td>No functional difference</td>
</tr>
<tr>
<td>39</td>
<td>SIM_IO</td>
<td>SIM Data I/O</td>
<td>SIM_IO</td>
<td>SIM Data I/O</td>
<td></td>
<td>No functional difference</td>
</tr>
<tr>
<td>40</td>
<td>SIM_RST</td>
<td>SIM Reset Output</td>
<td>SIM_RST</td>
<td>SIM Reset Output</td>
<td></td>
<td>No functional difference</td>
</tr>
<tr>
<td>41</td>
<td>VSIM</td>
<td>SIM Supply Output</td>
<td>VSIM</td>
<td>SIM Supply Output</td>
<td></td>
<td>No functional difference</td>
</tr>
<tr>
<td>42</td>
<td>SIM_DET</td>
<td>1.8V SIM Detection</td>
<td>SIM_DET</td>
<td>1.8V SIM Detection settable as SIM Detection</td>
<td></td>
<td>No functional difference</td>
</tr>
<tr>
<td>43</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>RSVD</td>
<td>Reserved</td>
<td>SDIO_D2</td>
<td>1.8 V, SDIO serial data [2]</td>
<td>RSVD → SDIO</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>RSVD</td>
<td>Reserved</td>
<td>SDIO_CLK</td>
<td>1.8 V, SDIO serial clock</td>
<td>RSVD → SDIO</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>RSVD</td>
<td>Reserved</td>
<td>SDIO_CMD</td>
<td>1.8 V, SDIO command</td>
<td>RSVD → SDIO</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>RSVD</td>
<td>Reserved</td>
<td>SDIO_D0</td>
<td>1.8 V, SDIO serial data [0]</td>
<td>RSVD → SDIO</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>RSVD</td>
<td>Reserved</td>
<td>SDIO_D3</td>
<td>1.8 V, SDIO serial data [3]</td>
<td>RSVD → SDIO</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>RSVD</td>
<td>Reserved</td>
<td>SDIO_D1</td>
<td>1.8 V, SDIO serial data [1]</td>
<td>RSVD → SDIO</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-53</td>
<td>VCC</td>
<td>Module Supply Input</td>
<td>VCC</td>
<td>Module Supply Input</td>
<td>Normal range: 3.3 V - 4.4 V (Extended range: 3.1 V - 4.5 V)</td>
<td>No functional difference</td>
</tr>
<tr>
<td>54-55</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>ANT</td>
<td>RF Antenna Input/Output</td>
<td>ANT1</td>
<td>RF Antenna Input/Output (primary)</td>
<td>No functional difference</td>
<td></td>
</tr>
<tr>
<td>57-58</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24 Not supported by LARA-R204-02B and LARA-R220-62B modules product versions.
25 Not supported by "02" and "62" product versions.
<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Pin name</th>
<th>Description</th>
<th>LARA-R2 Pin name</th>
<th>Description</th>
<th>Remarks for migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>GND</td>
<td>Ground</td>
<td>ANT_DET</td>
<td>Antenna Detection Input</td>
<td>GND → ANT_DET</td>
</tr>
<tr>
<td>60-61</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>ANT_DET</td>
<td>Antenna Detection Input</td>
<td>ANT2</td>
<td>RF Antenna Input (secondary)</td>
<td>ANT_DET → ANT2</td>
</tr>
<tr>
<td>63-96</td>
<td>GND</td>
<td>Ground</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>97-98</td>
<td>-</td>
<td>Not Available</td>
<td>RSVD</td>
<td>Reserved</td>
<td>No functional difference</td>
</tr>
<tr>
<td>99</td>
<td>-</td>
<td>Not Available</td>
<td>HSIC_DATA</td>
<td>HSIC USB data line²⁵</td>
<td>Not Available → HSIC</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>Not Available</td>
<td>HSIC_STRB</td>
<td>HSIC USB strobe line²⁵</td>
<td>Not Available → HSIC</td>
</tr>
</tbody>
</table>

Table 54: SARA-U2 and LARA-R2 series modules pin assignment with remarks for migration

For further details regarding the characteristics, capabilities, usage or settings applicable for each interface of the SARA-U2 and LARA-R2 series modules, see the LARA-R2 series data sheet [1], the SARA-U2 series data sheet [27], the SARA-G3 / SARA-U2 series system integration manual [28], the u-blox AT commands manual [2] and the Nested design application note [26].
A.3 Schematic for SARA-U2 and LARA-R2 integration

Figure 77 shows an example of a schematic diagram where a SARA-U2 or a LARA-R2 series module can be integrated into the same application board, using all the available interfaces and functions of the modules. The different mounting options for the external parts are noted herein according to the functions supported by each module.

Figure 77: Example of complete schematic diagram to integrate SARA-U2 / LARA-R2 modules on the same application board.
B Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
<tr>
<td>8-PSK</td>
<td>8 Phase-Shift Keying modulation</td>
</tr>
<tr>
<td>16QAM</td>
<td>16-state Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>ACM</td>
<td>Abstract Control Model</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>AP</td>
<td>Application Processor</td>
</tr>
<tr>
<td>APN</td>
<td>Access Point Name</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application-Specific Integrated Circuit</td>
</tr>
<tr>
<td>AT</td>
<td>AT Command Interpreter Software Subsystem</td>
</tr>
<tr>
<td>ATE</td>
<td>Automatic Test Equipment</td>
</tr>
<tr>
<td>BAW</td>
<td>Bulk Acoustic Wave</td>
</tr>
<tr>
<td>BIP</td>
<td>Bearer Independent Protocol</td>
</tr>
<tr>
<td>BJT</td>
<td>Bipolar Junction Transistor</td>
</tr>
<tr>
<td>CDC</td>
<td>Communication Device Class</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code-Division Multiple Access</td>
</tr>
<tr>
<td>CE</td>
<td>Certification Mark for EHS compliance in the European Economic Area</td>
</tr>
<tr>
<td>CENELEC</td>
<td>Comité Européen de Normalisation Électrotechnique</td>
</tr>
<tr>
<td>CSFB</td>
<td>Circuit Switched Fall-Back</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCE</td>
<td>Data Communication Equipment</td>
</tr>
<tr>
<td>DDC</td>
<td>Display Data Channel interface</td>
</tr>
<tr>
<td>DL</td>
<td>Down-Link (Reception)</td>
</tr>
<tr>
<td>DRX</td>
<td>Discontinuous Reception</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment</td>
</tr>
<tr>
<td>ECC</td>
<td>Envelope Correlation Coefficient</td>
</tr>
<tr>
<td>EDGE</td>
<td>Enhanced Data rates for GSM Evolution</td>
</tr>
<tr>
<td>EGPRS</td>
<td>Enhanced General Packet Radio Service</td>
</tr>
<tr>
<td>EMC</td>
<td>Electro-magnetic Compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electro-magnetic Interference</td>
</tr>
<tr>
<td>EPA</td>
<td>Electrostatic Protective Area</td>
</tr>
<tr>
<td>ESD</td>
<td>Electro-static Discharge</td>
</tr>
<tr>
<td>ESR</td>
<td>Equivalent Series Resistance</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplex</td>
</tr>
<tr>
<td>FEM</td>
<td>Front End Module</td>
</tr>
<tr>
<td>FOTA</td>
<td>Firmware Over The Air</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>FW</td>
<td>Firmware</td>
</tr>
<tr>
<td>GERA</td>
<td>GSM EGPRS Radio Access</td>
</tr>
<tr>
<td>GMSK</td>
<td>Gaussian Minimum Shift Keying modulation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>GLONASS</td>
<td>(Russian) GLObal Navigation Satellite System</td>
</tr>
<tr>
<td>GMSK</td>
<td>Gaussian Minimum-Shift Keying modulation</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input Output</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Services</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communication</td>
</tr>
<tr>
<td>GSM</td>
<td>GSM (Groupe Spéciale Mobile) Association</td>
</tr>
<tr>
<td>HBM</td>
<td>Human Body Model</td>
</tr>
<tr>
<td>HSIC</td>
<td>High Speed Inter Chip</td>
</tr>
<tr>
<td>HSDPA</td>
<td>High Speed Downlink Packet Access</td>
</tr>
<tr>
<td>HSUPA</td>
<td>High Speed Uplink Packet Access</td>
</tr>
<tr>
<td>HTTP</td>
<td>HyperText Transfer Protocol</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>I/Q</td>
<td>In-phase and Quadrature</td>
</tr>
<tr>
<td>I2C</td>
<td>Inter-Integrated Circuit interface</td>
</tr>
<tr>
<td>I2S</td>
<td>Inter IC Sound interface</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IMEI</td>
<td>International Mobile Equipment Identity</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>LCC</td>
<td>Leadless Chip Carrier</td>
</tr>
<tr>
<td>LDO</td>
<td>Low-Dropout</td>
</tr>
<tr>
<td>LGA</td>
<td>Land Grid Array</td>
</tr>
<tr>
<td>LNA</td>
<td>Low Noise Amplifier</td>
</tr>
<tr>
<td>LPDDR</td>
<td>Low Power Double Data Rate synchronous dynamic RAM memory</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>M2M</td>
<td>Machine to machine</td>
</tr>
<tr>
<td>MCS</td>
<td>Modulation Coding Scheme</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple In Multiple Out</td>
</tr>
<tr>
<td>MSD</td>
<td>Moisture Sensitive Device</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NCM</td>
<td>Network Control Model</td>
</tr>
<tr>
<td>NSMD</td>
<td>Non Solder Mask Defined</td>
</tr>
<tr>
<td>NTC</td>
<td>Negative Temperature Coefficient</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer device: an application device integrating a u-blox cellular module</td>
</tr>
<tr>
<td>OTA</td>
<td>Over The Air</td>
</tr>
<tr>
<td>PA</td>
<td>Power Amplifier</td>
</tr>
<tr>
<td>PCM</td>
<td>Pulse Code Modulation</td>
</tr>
<tr>
<td>PFM</td>
<td>Pulse Frequency Modulation</td>
</tr>
<tr>
<td>PMU</td>
<td>Power Management Unit</td>
</tr>
<tr>
<td>PTCRB</td>
<td>PCS Type Certification Review Board</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
</tbody>
</table>
| Abbreviation | Definition |}
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RSE</td>
<td>Radiated Spurious Emission</td>
</tr>
<tr>
<td>RTC</td>
<td>Real Time Clock</td>
</tr>
<tr>
<td>SAR</td>
<td>Specific Absorption Rate</td>
</tr>
<tr>
<td>SAW</td>
<td>Surface Acoustic Wave</td>
</tr>
<tr>
<td>SDIO</td>
<td>Secure Digital Input Output</td>
</tr>
<tr>
<td>SDN / IN / PCN</td>
<td>Sample Delivery Note / Information Note / Product Change Notification</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identification Module</td>
</tr>
<tr>
<td>SMD</td>
<td>Solder Mask Defined</td>
</tr>
<tr>
<td>SMS</td>
<td>Short Message Service</td>
</tr>
<tr>
<td>SMT</td>
<td>Surface-Mount Technology</td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>SRF</td>
<td>Self Resonant Frequency</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Sockets Layer</td>
</tr>
<tr>
<td>STS</td>
<td>Smart Temperature Supervisor</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Defined</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>THT</td>
<td>Through-Hole Technology</td>
</tr>
<tr>
<td>Ti</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>TIS</td>
<td>Total Isotropic Sensitivity</td>
</tr>
<tr>
<td>TP</td>
<td>Test-Point</td>
</tr>
<tr>
<td>TRP</td>
<td>Total Radiated Power</td>
</tr>
<tr>
<td>TTFF</td>
<td>Time-To-First-Fix</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver-Transmitter</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UICC</td>
<td>Universal Integrated Circuit Card</td>
</tr>
<tr>
<td>UL</td>
<td>Up-Link (Transmission)</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UTRA</td>
<td>UMTS Terrestrial Radio Access</td>
</tr>
<tr>
<td>VCC</td>
<td>Voltage Collector Collector</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage Controlled Oscillator</td>
</tr>
<tr>
<td>VoLTE</td>
<td>Voice over LTE</td>
</tr>
<tr>
<td>VSWR</td>
<td>Voltage Standing Wave Ratio</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code-Division Multiple Access</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Wireless Local Area Network (IEEE 802.11 short range radio technology)</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network (IEEE 802.11 short range radio technology)</td>
</tr>
<tr>
<td>WWAN</td>
<td>Wireless Wide Area Network (GSM / UMTS / LTE cellular radio technology)</td>
</tr>
</tbody>
</table>
Related documents

[1] u-blox LARA-R2 series data sheet, doc. no. UBX-16005783
[3] u-blox EVK-R2xx user guide, doc. no. UBX-16016088
[4] u-blox Windows Embedded OS USB driver installation application note, doc. no. UBX-14003263
[6] 3GPP TS 27.007 – AT command set for User Equipment (UE)
[7] 3GPP TS 27.005 – Use of Data Terminal Equipment - Data Circuit-terminating Equipment (DTE-DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
[8] 3GPP TS 27.010 – Terminal Equipment to User Equipment (TE-UE) multiplexer protocol
[16] 3GPP TS 36.523-2 - Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment conformance specification; Part 2: Implementation Conformance Statement (ICS)
[18] CENELEC EN 61000-4-2 – Electromagnetic compatibility (EMC); Part 4-2: Testing and measurement techniques; Electrostatic discharge immunity test
[19] ETSI EN 301 489-1 – Electromagnetic compatibility and Radio spectrum Matters; EMC standard for radio equipment and services; Part 1: Common technical requirements
[20] ETSI EN 301 489-52 – Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 52: Specific conditions for Cellular Communication Mobile and portable (UE) radio and ancillary equipment
[21] u-blox multiplexer implementation application note, doc. no. UBX-13001887
[22] u-blox GNSS implementation application note, doc. no. UBX-13001849
[23] u-blox firmware update application note, doc. no. UBX-13001845
[24] u-blox end user test application note, doc. no. UBX-13001922
[25] u-blox package information user guide, doc. no. UBX-14001652
[26] u-blox nested design application note, doc. no. UBX-16007243
[27] u-blox SARA-U2 series data sheet, doc. no. UBX-13005287
[28] u-blox SARA-G3 and SARA-U2 series system integration manual, doc. no. UBX-13000995

For regular updates to u-blox documentation and to receive product change notifications, register on our homepage (www.u-blox.com).
Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>R01</td>
<td>20-Sep-2016</td>
<td>sses</td>
<td>Initial release</td>
</tr>
<tr>
<td>R02</td>
<td>11-Oct-2016</td>
<td>lpah</td>
<td>Added LARA-R2 PTs information. PID of USB profile updated.</td>
</tr>
<tr>
<td>R03</td>
<td>25-Nov-2016</td>
<td>sses</td>
<td>Updated Power-on and Power-off sections.</td>
</tr>
<tr>
<td>R05</td>
<td>19-Apr-2017</td>
<td>sses</td>
<td>Updated LARA-R204-02B / LARA-R211-02B product status. Added maximum antenna gain for LARA-R211.</td>
</tr>
<tr>
<td>R06</td>
<td>29-May-2017</td>
<td>sses</td>
<td>Updated LARA-R203-02B product status to Engineering Samples.</td>
</tr>
<tr>
<td>R09</td>
<td>22-Sep-2017</td>
<td>sses</td>
<td>Updated LARA-R202-02B product status.</td>
</tr>
<tr>
<td>R12</td>
<td>25-May-2018</td>
<td>sses</td>
<td>Extended document applicability to LARA-R202-02B-01, LARA-R203-02B-01, LARA-R204-02B-01, LARA-R280-02B-01.</td>
</tr>
</tbody>
</table>
Contact

For complete contact information, visit us at www.u-blox.com.

u-blox Offices

North, Central and South America
u-blox America, Inc.
Phone: +1 703 483 3180
E-mail: info_us@u-blox.com

Regional Office West Coast:
Phone: +1 408 573 3640
E-mail: info_us@u-blox.com

Technical Support:
Phone: +1 703 483 3185
E-mail: support@u-blox.com

Headquarters
Europe, Middle East, Africa
u-blox AG
Phone: +41 44 722 74 44
E-mail: info@u-blox.com
Support: support@u-blox.com

Asia, Australia, Pacific
u-blox Singapore Pte. Ltd.
Phone: +65 6734 3811
E-mail: info_ap@u-blox.com
Support: support_ap@u-blox.com

Regional Office Australia:
Phone: +61 2 8448 2016
E-mail: info_au@u-blox.com
Support: support_ap@u-blox.com

Regional Office China (Beijing):
Phone: +86 10 6833 545
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Chongqing):
Phone: +86 23 6815 1588
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Shanghai):
Phone: +86 21 6090 4832
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office China (Shenzhen):
Phone: +86 755 8627 1083
E-mail: info_cn@u-blox.com
Support: support_cn@u-blox.com

Regional Office India:
Phone: +91 80 405 092 00
E-mail: info_in@u-blox.com
Support: support_in@u-blox.com

Regional Office Japan (Osaka):
Phone: +81 6 6941 3660
E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com

Regional Office Japan (Tokyo):
Phone: +81 3 5775 3850
E-mail: info_jp@u-blox.com
Support: support_jp@u-blox.com

Regional Office Korea:
Phone: +82 2 542 0861
E-mail: info_kr@u-blox.com
Support: support_kr@u-blox.com

Regional Office Taiwan:
Phone: +886 2 2657 1090
E-mail: info_tw@u-blox.com
Support: support_tw@u-blox.com